9.設(shè)α∈(0,$\frac{π}{2}$),若sinα=$\frac{3}{5}$,則$\sqrt{2}cos(2α+\frac{π}{4})$=(  )
A.$\frac{7}{25}$B.$\frac{17}{25}$C.-$\frac{17}{25}$D.$\frac{31}{25}$

分析 根據(jù)同角的三角函數(shù)關(guān)系求出cosα,再化簡$\sqrt{2}cos(2α+\frac{π}{4})$,利用二倍角公式求值即可.

解答 解:α∈(0,$\frac{π}{2}$),sinα=$\frac{3}{5}$,
∴cosα=$\sqrt{1{-sin}^{2}α}$=$\frac{4}{5}$;
∴$\sqrt{2}cos(2α+\frac{π}{4})$=$\sqrt{2}$cos2αcos$\frac{π}{4}$-$\sqrt{2}$sin2αsin$\frac{π}{4}$
=cos2α-sin2α
=2cos2α-1-2sinαcosα
=2×${(\frac{4}{5})}^{2}$-1-2×$\frac{3}{5}$×$\frac{4}{5}$
=-$\frac{17}{25}$.
故選:C.

點評 本題考查了三角函數(shù)的化簡求值問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知點A(-2,3)在拋物線C:y2=2px的準(zhǔn)線上,過點A的直線與C在第一象限相切于點B,記C的焦點為F,則|BF|=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)命題p:?x>0,log2x<2x+3,則¬p為( 。
A.?x>0,log2x≥2x+3B.?x>0,log2x≥2x+3C.?x>0,log2x<2x+3D.?x<0,log2x≥2x+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知f'(x)=2x+m,且f(0)=0,函數(shù)f(x)的圖象在點A(1,f(1))處的切線的斜率為3,數(shù)列$\left\{{\frac{1}{f(n)}}\right\}$的前n項和為Sn,則S2017的值為( 。
A.$\frac{2017}{2018}$B.$\frac{2014}{2015}$C.$\frac{2015}{2016}$D.$\frac{2016}{2017}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若二次函數(shù)f(x)=ax2+bx+c(a≤b)的值域為[0,+∞),則$\frac{b-a}{a+b+c}$的最大值是$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=xlnx-$\frac{a}{2}{x^2}$-x+a(a∈R)在其定義域內(nèi)有兩個不同的極值點.
(1)求a的取值范圍;
(2)記兩個極值點分別為x1,x2,且x1<x2,已知λ>0,若不等式e1+λ<x1x2λ恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=cos$\frac{1}{2}$x的圖象向右平移π個單位得到函數(shù)y=g(x)的圖象,則g($\frac{π}{3}$)=( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在平面直角坐標(biāo)系xOy中,M,N是x軸上的動點,且|OM|2+|ON|2=8,過點M,N分別作斜率為$\frac{{\sqrt{3}}}{2},-\frac{{\sqrt{3}}}{2}$的兩條直線交于點P,設(shè)點P的軌跡為曲線E.
(Ⅰ)求曲線E的方程;
(Ⅱ)過點Q(1,1)的兩條直線分別交曲線E于點A,C和B,D,且AB∥CD,求證直線AB的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.甲、乙、丙3位志愿者安排在周一至周六的六天中參加某項志愿者活動,要求每人參加一天且每天至多安排一人,并要求甲安排在另外兩位前面,不同的安排放法共有( 。
A.20種B.30種C.40種D.60種

查看答案和解析>>

同步練習(xí)冊答案