16.已知函數(shù)f(x)=ax2+bx+c,當(dāng)|x|≤1時,|f(x)|≤1恒成立.
(Ⅰ)若a=1,b=c,求實數(shù)b的取值范圍;
(Ⅱ)若g(x)=|cx2-bx+a|,當(dāng)|x|≤1時,求g(x)的最大值.

分析 (Ⅰ)若a=1,b=c,則|f(1)|=|1+b+b|≤1,f(x)的對稱軸$x=-\frac{2}∈[0,\frac{1}{2}]$,進而求得實數(shù)b的取值范圍;
(Ⅱ)由當(dāng)|x|≤1時,|f(x)|≤1恒成立,可知|f(-1)|≤1,|f(0)|≤1,|f(1)|≤1,利用放縮法,可得當(dāng)x=0時,g(x)=|-x2+2|取到最大值2.

解答 解:(Ⅰ)由a=1且b=c,得$f(x)={x^2}+bx+b={(x+\frac{2})^2}+b-\frac{b^2}{4}$,…(1分)
當(dāng)x=1時,|f(1)|=|1+b+b|≤1,得-1≤b≤0. …(3分)
故f(x)的對稱軸$x=-\frac{2}∈[0,\frac{1}{2}]$,
所以當(dāng)|x|≤1時,$\left\{\begin{array}{l}f{(x)_{min}}=f(-\frac{2})=b-\frac{b^2}{4}≥-1\\ f{(x)_{max}}=f(-1)=1≤1.\end{array}\right.$,…(5分)
解得          $2-2\sqrt{2}≤b≤2+2\sqrt{2}$…(6分)
綜上,實數(shù)b的取值范圍為$[2-2\sqrt{2},0]$. …(7分)
(Ⅱ)由當(dāng)|x|≤1時,|f(x)|≤1恒成立,可知|f(-1)|≤1,|f(0)|≤1,|f(1)|≤1,…(8分)
且由  f(-1)=a-b+c,f(0)=c,f(1)=a+b+c,
解得$a=\frac{f(-1)+f(1)-2f(0)}{2}$,$b=\frac{f(1)-f(-1)}{2}$,c=f(0).…(10分)
故$g(x)=|{f(0){x^2}-\frac{f(1)-f(-1)}{2}x+\frac{f(-1)+f(1)-2f(0)}{2}}|$
$\begin{array}{l}≤|{f(0)({x^2}-1)}|+|{\frac{f(-1)-f(1)}{2}x+\frac{f(-1)+f(1)}{2}}|\\≤|{f(0)}||{{x^2}-1}|+max\{|{f(-1)}|,|{f(1)}|\}\end{array}$
≤1+1=2…(14分)
且當(dāng)a=2,b=0,c=-1時,若|x|≤1,則|f(x)|=|2x2-1|≤1恒成立,
且當(dāng)x=0時,g(x)=|-x2+2|取到最大值2.
所以,g(x)的最大值為2. …(15分)

點評 本題考查的知識點是二次函數(shù)的圖象和性質(zhì),分段函數(shù)的應(yīng)用,恒成立問題,最值問題,綜合性可,難度較大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.一個人帶著三只狼和三只羚羊過河,只有一條船,該船可容納一個人和兩只動物.沒有人在的時候,如果狼的數(shù)量不少于羚羊的數(shù)量,狼就會吃羚羊.該人如何才能將動物轉(zhuǎn)移過河?請設(shè)計算法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=lnx-ax.
(Ⅰ)若函數(shù)f(x)在(1,+∞)上單調(diào)遞減,求實數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=1時,函數(shù)$g(x)=f(x)+x+\frac{1}{2x}-m$有兩個零點x1,x2,且x1<x2.求證:x1+x2>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.橢圓$\frac{x^2}{16}+\frac{y^2}{9}=1$的短軸的長是( 。
A.3B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知f′(x)是函數(shù)f(x),(x∈R)的導(dǎo)數(shù),滿足f′(x)=-f(x),且f(0)=2,設(shè)函數(shù)g(x)=f(x)-lnf3(x)的一個零點為x0,則以下正確的是( 。
A.x0∈(-4,-3)B.x0∈(-3,-2)C.x0∈(-2,-1)D.x0∈(-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=lnx,g(x)=ax2-(2a+1)x,a∈R
(1)當(dāng)a=1時,求不等式f(x)•g(x)>0的解集;
(2)若a≠0,求函數(shù)F(x)=f(x)+g(x)的單調(diào)遞減區(qū)間;
(3)求證:當(dāng)a∈[-$\frac{3+2\sqrt{2}}{2}$,$\frac{2}{3}$]時,對于任意兩個不等的實數(shù)x1,x2∈[$\frac{1}{4}$,$\frac{3}{4}$],均有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知a∈R,函數(shù)f(x)=ex-1-ax的圖象與x軸相切.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x>1時,f(x)>m(x-1)lnx,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓C的中心在原點,焦點在x軸上,離心率為$\frac{\sqrt{3}}{2}$,它的一個頂點恰好是拋物線x2=4$\sqrt{2}$y的焦點.
(1)求橢圓C的方程;
(2)直線x=2與橢圓交于P,Q兩點,P點位于第一象限,A,B是橢圓上位于直線x=2兩側(cè)的動點.當(dāng)點A,B運動時,滿足∠APQ=∠BPQ,問直線AB的斜率是否為定值,如果為定值,求出斜率的值;如果不為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,且|F1F2|=2,點P(2,$\frac{2\sqrt{5}}{5}$)在橢圓上.
(1)求橢圓C的方程;
(2)設(shè)O為坐標(biāo)原點,圓O:x2+y2=a2,B1(0,-b),B2(0,b),E為橢圓C上異于頂點的任意一點,點F在圓O上,且EF⊥x軸,E與F在x軸兩側(cè),直線EB1,EB2分別與x軸交于點C,H,記直線FG,F(xiàn)H的斜率分別為k1,k2,問:k1k2是否為定值?若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案