1.已知圓C的圓心在直線x=2上,并且與y軸交于兩點A(0,-4)、B(0,-2),求圓C的方程.

分析 要求圓的標(biāo)準(zhǔn)方程,即要找到圓心坐標(biāo)和半徑,根據(jù)圖形可知圓心坐標(biāo),然后利用兩點間的距離公式即可求出圓心到A的距離即為圓的半徑,然后根據(jù)圓心坐標(biāo)和半徑寫出圓的標(biāo)準(zhǔn)方程即可.

解答 解:如圖示:
根據(jù)垂徑定理可得AB的垂直平分線y=-3過圓心,
而圓心過x=2,則圓心坐標(biāo)為(2,-3),
圓的半徑r=|AC|=$\sqrt{{(2-0)}^{2}{-(-3+4)}^{2}}$=$\sqrt{5}$,
則圓的標(biāo)準(zhǔn)方程為:(x-2)2+(y+3)2=5.

點評 此題考查學(xué)生靈活運用垂徑定理及兩點間的距離公式化簡求值,會根據(jù)圓心和半徑寫出圓的標(biāo)準(zhǔn)方程,是一道綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=2sin(ωx+$\frac{π}{6}$)(ω>0)的圖象與函數(shù)g(x)=cos(2x+φ)(|φ|<$\frac{π}{2}$)的圖象的對稱中心完全相同,則φ=( 。
A.$\frac{π}{6}$B.-$\frac{π}{6}$C.$\frac{π}{3}$D.-$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,ABCD是平行四邊形,已知$AB=2BC=4,BD=2\sqrt{3}$,BE=CE,平面BCE⊥平面ABCD.
(Ⅰ)證明:BD⊥CE;
(Ⅱ)若$BE=CE=\sqrt{10}$,求三棱錐B-ADE的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.(Ⅰ)已知x2-y2+2xyi=2i,求實數(shù)x、y的值;
(Ⅱ)關(guān)于x的方程3x2-$\frac{a}{2}$x-1=(10-x-2x2)i有實根,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),A(0,-b),B(0,b),P為雙曲線上的一點,且|AB|=|BP|,則雙曲線離心率的取值范圍是(  )
A.[$\sqrt{2}$,+∞)B.(1,$\frac{\sqrt{5}}{2}$]C.[$\frac{\sqrt{5}+1}{2}$,+∞)D.[$\frac{\sqrt{10}+\sqrt{2}}{4}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,E、F、G分別為線段BC、PA、AB上的點,H為△PCD的重心,PA=AB=3,F(xiàn)A=BG=CE=1.
(1)求證:BF∥平面PDE;
(2)求異面直線GH與PE所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知y=f(x)是奇函數(shù),若g(x)=f(x)-1且g(1)=0,則g(-1)=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.從1,2,3,…,7共7個數(shù)字中任取3個不同的數(shù)字,則這3個數(shù)字由小到大可組成等差數(shù)列的概率為( 。
A.$\frac{11}{35}$B.$\frac{9}{35}$C.$\frac{1}{5}$D.$\frac{1}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知x∈N*,f(x)=$\left\{\begin{array}{l}{{x}^{2}-35,x≥3}\\{f(x+2),x<3}\end{array}\right.$,其值域設(shè)為D,給出下列數(shù)值:-26,-1,9,14,27,65,則其中屬于集合D的元素是-26,14,65.(寫出所有可能的數(shù)值)

查看答案和解析>>

同步練習(xí)冊答案