20.已知函數(shù)f(x)=$\frac{1}{3}$x3-x2-8x+4.
(1)求f(x)的單調(diào)區(qū)間;
(2)當x∈[-1,5]時,求f(x)的最大值.

分析 (1)求出函數(shù)的導數(shù),解關(guān)于導函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;
(2)根據(jù)函數(shù)的單調(diào)性,計算f(-1),f(5)的值,從而求出f(x)在[-1,5]是的最大值即可.

解答 解:(1)f′(x)=x2-2x-8=(x-4)(x+2),
令f′(x)>0,解得:x>4或x<-2,
令f′(x)<0,解得:-2<x<4,
∴f(x)在(-∞,-2)遞增,在(-2,4)遞減,在(4,+∞)遞增;
(2)由(1)知:f(x)在(-1,4)遞減,在(4,5)遞增,
而f(-1)=$\frac{32}{3}$,f(5)=-$\frac{58}{3}$,
∴x∈[-1,5]時,f(x)的最大值是$\frac{32}{3}$.

點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導數(shù)的應(yīng)用,是一道基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)$f(x)=\frac{a-2lnx}{x^2}$在點(1,f(1))處的切線與直線y=-4x+1平行.
(1)求實數(shù)a的值及f(x)的極值;
(2)若對任意x1,x2$∈(0,\frac{1}{e}]$,有$|\frac{{f({x_1})-f({x_2})}}{x_1^2-x_2^2}|>\frac{k}{x_1^2•x_2^2}$,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.在平面直角坐標系xOy中,已知點M(4,2)和N(-3,6),則△OMN的面積為( 。
A.5$\sqrt{5}$B.15C.6$\sqrt{5}$D.30

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.解不等式|2x-4|-|3x+9|<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.在平面直角坐標系xOy中,圓C的方程為(x-2)2+(y-3)2=9,若過點M(0,3)的直線與圓C交于P,Q兩點(其中點P在第二象限),且∠PMO=2∠PQO,則點Q的橫坐標為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知曲線C的參數(shù)方程為$\left\{{\begin{array}{l}{x=3cosθ}\\{y=2sinθ}\end{array}$(θ為參數(shù)),在同一平面直角坐標系中,將曲線C上的點按坐標變換$\left\{{\begin{array}{l}{x'=\frac{1}{3}x}\\{y'=\frac{1}{2}y}\end{array}}$得到曲線C',以原點為極點,x軸的正半軸為極軸,建立極坐標系.
(1)寫出曲線 C與曲線C'的極坐標的方程;
(2)若過點A(2$\sqrt{2}$,$\frac{π}{4}}$)(極坐標)且傾斜角為$\frac{π}{3}$的直線l與曲線C交于M,N兩點,試求|AM|•|AN|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.設(shè)a>1,a2x>a3,則x的取值范圍是x>$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知多面體ABCDE中,底面△ABC為等邊三角形,邊長為2,DE∥AC,AE∥DO,AE⊥面ABC,O為AC的中點,EA=1.
(1)若P為AB的中點,求證:EP∥面BDC;
(2)求二面角E-BD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知e是自然對數(shù)的底數(shù),F(xiàn)(x)=2ex-1+x+lnx,f(x)=a(x-1)+3
(1)設(shè)T(x)=F(x)-f(x),當a=1+2e-1時,求證:T(x)在(0,+∞)上單調(diào)遞增;
(2)若?x≥1,F(xiàn)(x)≥f(x),求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案