3.若函數(shù)f(x2-2)的定義域是[-1,1],則函數(shù)f(3x+2)的定義域為[-$\frac{4}{3}$,-1].

分析 求出f(x)的定義域,解不等式-2≤3x+2≤-1,解出即可.

解答 解:∵-1≤x≤1,
∴-2≤x2-2≤-1,
-2≤3x+2≤-1,
解得:-$\frac{4}{3}$≤x≤-1,
故答案為:$[{-\frac{4}{3},-1}]$.

點評 本題考查了函數(shù)的定義域及其求法,給出f[g(x)]的定義域為[a,b],求解f(x)的定義域,就是求解x∈[a,b]時的g(x)的值域;給出f(x)的定義域為[a,b],求解f[g(x)]的定義域,只要由a≤g(x)≤b求解x的范圍即可,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

13.設集合A={x|x2-2x-8<0},$B=\left\{{x\left|{{2^x}<\frac{1}{2}}\right.}\right\}$,則圖中陰影部分表示的集合為( 。
A.{x|-4<x<-1}B.{x|-1≤x<2}C.{x|-4<x≤-1}D.{x|-1≤x<4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.(1)已知$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-3,2),當實數(shù)k取何值時,k$\overrightarrow{a}$+2$\overrightarrow$與2$\overrightarrow{a}$-4$\overrightarrow$平行?
(2)已知$\overrightarrow{a}$=(-2,3),$\overrightarrow$∥$\overrightarrow{a}$,向量$\overrightarrow$的起點為A(1,2),終點B在坐標軸上,求點B的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知a>0且a≠1,命題p:函數(shù)y=loga(x+1)在區(qū)間(0,+∞)上為減函數(shù);命題q:曲線y=x2+(2a-3)x+1與x軸相交于不同的兩點.若p∨q為真,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知函數(shù)f(x)=xlnx-$\frac{a}{2}$x2-x在定義域內(nèi)為單調(diào)函數(shù),則實數(shù)a的取值范圍是$[\frac{1}{e},+∞)$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.設全集I={1,3,a2},A={3,a-1},CUA={4},則a為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.曲線$\left\{\begin{array}{l}x=5cosα\\ y=4sinα\end{array}$(α為參數(shù))的離心率$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.$\sqrt{2+2cos8}$+2$\sqrt{1-sin8}$=( 。
A.2sin4B.-2sin4C.2cos4D.-2cos4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.(x-1)(x+1)4的展開式中x4的系數(shù)是(  )
A.-3B.3C.-5D.5

查看答案和解析>>

同步練習冊答案