若α∈R,則方程x2+4y2sinα=1所表示的曲線一定不是(    )
A.直線B.圓C.拋物線D.雙曲線
C
當(dāng)sinα=時,方程表示圓;當(dāng)sinα>0,且sinα≠時,方程表示橢圓;當(dāng)sinα<0時,方程表示雙曲線;當(dāng)sinα=0時,方程表示兩條平行直線.故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,過拋物線的對稱軸上任一點(diǎn)作直線與拋物線交于兩點(diǎn),點(diǎn)是點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn).
(1) 設(shè)點(diǎn)分有向線段所成的比為,證明:;
(2) 設(shè)直線的方程是,過兩點(diǎn)的圓與拋物線在點(diǎn)處有共同的切線,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分15分)已知過點(diǎn),0)()的動直線交拋物線兩點(diǎn),點(diǎn)與點(diǎn)關(guān)于軸對稱.(I)當(dāng)時,求證:;
(II)對于給定的正數(shù),是否存在直線,使得被以為直徑的圓所截得的弦長為定值?如果存在,求出的方程;如果不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)動點(diǎn)到定點(diǎn)的距離比它到軸的距離大1,記點(diǎn)的軌跡為曲線.
(1)求點(diǎn)的軌跡方程;
(2)設(shè)圓,且圓心在曲線上,是圓軸上截得的弦,試探究當(dāng)運(yùn)動時,弦長是否為定值?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若圓x2+y2=9上每個點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)縮短為原來的,則所得曲線的方程是(    )
A.+="1" B.+=1
C.+y2="1"D.+=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)設(shè)橢圓的左右焦點(diǎn)分別為,離心率,過分別作直線,且,分別交直線兩點(diǎn)。
(Ⅰ)若,求 橢圓的方程;
(Ⅱ)當(dāng)取最小值時,試探究
的關(guān)系,并證明之.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,A、B、C是三個觀察哨,A在B的正東,兩地相距6 kM,C在B的北偏西30°,兩地相距4 kM.在某一時刻,A觀察哨發(fā)現(xiàn)某種信號,并知道該信號的傳播速度為1 kM/s;4秒后B、C兩個觀察哨同時發(fā)現(xiàn)這種信號.在以過A、B兩點(diǎn)的直線為x軸,以線段AB的垂直平分線為y軸的直角坐標(biāo)系中,指出發(fā)射這種信號的地點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在橢圓上求一點(diǎn),使它到左焦點(diǎn)的距離是它到右焦點(diǎn)距離的兩倍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)直線l:2x+y+2=0關(guān)于原點(diǎn)對稱的直線為l′.若l′與橢圓x2+=1的交點(diǎn)為A、B,點(diǎn)P為橢圓上的動點(diǎn),則使△PAB的面積為的點(diǎn)P的個數(shù)為( 。
A.1B.2     C.3     D.4

查看答案和解析>>

同步練習(xí)冊答案