2.實數(shù)a,b滿足$\frac{1}{1-{2}^{a}}$+$\frac{1}{1-{2}^{b+1}}$=1,則a+b=-1.

分析 若$\frac{1}{1-{2}^{a}}$+$\frac{1}{1-{2}^{b+1}}$=1,去分母可得2a+b+1=1,進而得到答案.

解答 解:∵$\frac{1}{1-{2}^{a}}$+$\frac{1}{1-{2}^{b+1}}$=1,
∴$\frac{2-{2}^{a}-{2}^{b+1}}{(1-{2}^{a})(1-{2}^{b+1})}$=1,
∴2-2a-2b+1=1-2a-2b+1+2a+b+1,
∴2a+b+1=1,
∴a+b+1=0,
∴a+b=-1,
故答案為:-1

點評 本題考查的知識點是分式方程的解法,指數(shù)方程的解法,將原方程轉化為整式方程是解答的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.若數(shù)列bn=$\frac{n-2}{{2}^{n}}$,如果對任意的n∈N*,都有$\frac{7}{8}$+bn≤t2恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知圓F1:(x+1)2+y2=r2與F2:(x-1)2+y2=(4-r)2(0<r<4)的公共點的軌跡為曲線E
(Ⅰ)求E的方程;
(Ⅱ)如圖,動直線l:y=kx+m與橢圓E有且僅有一個公共點,點M,N是直線l上的兩點,且F1M⊥l,F(xiàn)2N⊥l,求四邊形F1MNF2面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知正三棱錐S-ABC中,SA=x,AB=1,SA與BC的距離為d,則$\underset{lim}{x→1}$d=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,若$\overrightarrow{a}$=$\overrightarrow{OD}$,$\overrightarrow$=$\overrightarrow{OE}$,$\overrightarrow{a}$與$\overrightarrow$的夾角為120°,|$\overrightarrow{a}$|=|$\overrightarrow$|=1,點P是以點O為圓心的圓弧$\widehat{DE}$上一動點,設$\overrightarrow{OP}$=x$\overrightarrow{OD}$+y$\overrightarrow{OE}$(x,y∈R),求x+y的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)f(x)=cosx+xsinx-a,x∈(-π,π),若f(x)有4個零點,則a的取值范圍為( 。
A.(-1,1)B.(1,$\frac{π}{2}$)C.(0,$\frac{π}{2}$)D.(-1,$\frac{π}{2}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知如圖平行四邊形ABCD中,點E是CD的中點,$\overrightarrow{BE}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$,用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{CD}$,$\overrightarrow{BD}$(寫出解題過程)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知集合A={(x,y)|x+y=1},集合B={(x,y)|x-2y=4},求A∩B,說明其幾何意義,并在平面直角坐標系中表示出來.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.若圓C:(x-$\frac{5}{2}$)2+(y-2)2=$\frac{25}{4}$上有4個點到直線x-y+a=0的距離為$\frac{1}{2}$,則實數(shù)a的取值范圍為($-\frac{1}{2}-2\sqrt{2},-\frac{1}{2}+2\sqrt{2}$).

查看答案和解析>>

同步練習冊答案