11.已知集合A={(x,y)|x+y=1},集合B={(x,y)|x-2y=4},求A∩B,說明其幾何意義,并在平面直角坐標(biāo)系中表示出來.

分析 聯(lián)立A與B中兩方程組成方程組,求出方程組的解得到A與B的交集,在平面直角坐標(biāo)系中表示出來即可.

解答 解:聯(lián)立得:$\left\{\begin{array}{l}{x+y=1①}\\{x-2y=4②}\end{array}\right.$,
①-②得:3y=-3,即y=-1,

把y=-1代入①得:x=2,
∴方程組的解為$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$,A∩B表示的幾何意義為A與B中兩函數(shù)圖象的交點(diǎn),
則A∩B={(2,-1)},

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.直線l:x-3y+4=0與圓(x-a)2+y2=5相交于A、B兩點(diǎn),設(shè)點(diǎn)P是直線l與x軸的交點(diǎn),若點(diǎn)A恰好是線段PB的中點(diǎn),則a=-4$±3\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.實(shí)數(shù)a,b滿足$\frac{1}{1-{2}^{a}}$+$\frac{1}{1-{2}^{b+1}}$=1,則a+b=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知等比數(shù)列{an}的前n項(xiàng)和是Sn,若S30=13S10,S10+S30=140,則S25的值為45$\sqrt{3}$-5或-45$\sqrt{3}$-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖,已知|$\overrightarrow{OA}$|=2,|$\overrightarrow{OB}$|=2$\sqrt{3}$,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0點(diǎn)C在線段AB上,∠AOC=30°,用$\overrightarrow{OA}$和$\overrightarrow{OB}$來表示向量$\overrightarrow{OC}$,則$\overrightarrow{OC}$等于$\frac{3}{4}\overrightarrow{OA}$+$\frac{1}{4}\overrightarrow{OB}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.通訊衛(wèi)星C在赤道上空3R(R為地球半徑)的軌道上,它每24小時(shí)繞地球一周,所以它定位于赤道上某一點(diǎn)的上空.如果此點(diǎn)與某地A(北緯60°)在同一條子午在線,則在A觀察此衛(wèi)星的仰角的正切值為$\frac{3}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.焦點(diǎn)在x軸上的雙曲線,虛半軸長為1,離心率為$\frac{2\sqrt{3}}{3}$.
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)已知直線l過點(diǎn)(4,-2),且與雙曲線有一個(gè)公共點(diǎn),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知點(diǎn)A($\sqrt{2}$,0)與圓O:x2+y2=1上B,C兩點(diǎn)共線,當(dāng)△OBC的面積最大時(shí),O到AB的距離為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{6}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在平面直角坐標(biāo)系xOy中,直線x+y-2=0在矩陣A=$[\begin{array}{l}{1}&{a}\\{1}&{2}\end{array}]$對(duì)應(yīng)的變換作用下得到直線x+y-b=0(a,b∈R),求a+b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案