1.k>3是方程$\frac{{x}^{2}}{3-k}$+$\frac{{y}^{2}}{k-1}$=1表示雙曲線的( 。l件.
A.充分但不必要B.充要
C.必要但不充分D.既不充分也不必要

分析 方程$\frac{{x}^{2}}{3-k}$+$\frac{{y}^{2}}{k-1}$=1表示雙曲線?(3-k)(k-1)<0,解得k范圍,即可判斷出結(jié)論.

解答 解:方程$\frac{{x}^{2}}{3-k}$+$\frac{{y}^{2}}{k-1}$=1表示雙曲線?(3-k)(k-1)<0,解得k>3或k<1.
∴k>3是方程$\frac{{x}^{2}}{3-k}$+$\frac{{y}^{2}}{k-1}$=1表示雙曲線的充分但不必要條件.
故選:A.

點(diǎn)評(píng) 本題考查了雙曲線的標(biāo)準(zhǔn)方程、簡(jiǎn)易邏輯的判定方法、不等式的解法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.?dāng)?shù)列{an}滿足a1=3,Sn=nan-n(n-1)
(Ⅰ) 求數(shù)列{an}的通項(xiàng)公式an;
(Ⅱ)令bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.直線x+(b-2)y+1=0與直線a2x+(b+2)y+3=0互相垂直,a,b∈R,則ab的最大值為( 。
A.1B.2C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}-1,x≥0}\\{-{x}^{2}-2x,x<0}\end{array}\right.$,若f(a)=1,則實(shí)數(shù)a的值是±1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知在△ABC中,角A,B,C的對(duì)邊分別為a,b,c.若cos2A+cos2C=2cos2B,則cosB的最小值為(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=5sinxcosx-5$\sqrt{3}{cos^2}x+\frac{{5\sqrt{3}}}{2}$
求:(1)函數(shù)f(x)的最小正周期;
(2)函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}lo{g_2}({5-x}),x≤1\\ f({x-1})+1,x>1\end{array}\right.$,則f(2 016)=(  )
A.2017B.2015C.2018D.2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)y=log${\;}_{\frac{1}{2}}$(x2-4tx+4t2+t+$\frac{1}{t-1}$)(t∈R)的定義域R,且y的最大值為f(t),則f(t)的值域是$(-∞,lo{g}_{\frac{1}{2}}3]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知$\overrightarrow{a}$=(-2,1),$\overrightarrow$=(k,-3),$\overrightarrow{c}$=(1,2),若($\overrightarrow{a}$-2$\overrightarrow$)⊥$\overrightarrow{c}$,則|$\overrightarrow$|=(  )
A.$3\sqrt{5}$B.3$\sqrt{2}$C.$2\sqrt{5}$D.$\sqrt{10}$

查看答案和解析>>

同步練習(xí)冊(cè)答案