1.判斷函數(shù)f(x)=$\sqrt{x+a}$(a≥0)在區(qū)間[-a,+∞)上的單調(diào)性.

分析 求導(dǎo)數(shù)f′(x),判斷其符號(hào),從而得出f(x)在[-a,+∞)上的單調(diào)性.

解答 解:f′(x)=$\frac{1}{2\sqrt{x+a}}>0$;
∴f(x)在[-a,+∞)上單調(diào)遞增.

點(diǎn)評(píng) 考查根據(jù)函數(shù)導(dǎo)數(shù)符號(hào)判斷函數(shù)單調(diào)性的方法,也可根據(jù)單調(diào)性的定義判斷.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.化簡(jiǎn)(1-a)$\root{4}{\frac{1}{(a-1)^{3}}}$的結(jié)果是( 。
A.$\root{4}{a-1}$B.-$\root{4}{a-1}$C.$\root{4}{1-a}$D.-$\root{4}{1-a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知數(shù)列{an}滿足n2an=(n2-1)an-1(n≥2,n∈N*),a1=2,求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.點(diǎn)P坐標(biāo)為(sinα-cosα,sinα+cosα),當(dāng)α∈(0,2π)時(shí),P在第二象限,則α取值范圍為( 。
A.(-$\frac{π}{4}$,$\frac{π}{4}$)B.(0,$\frac{π}{4}$)∪($\frac{7π}{4}$,2π)C.(0,$\frac{π}{4}$)∪($\frac{5π}{4}$,$\frac{7π}{4}$)D.($\frac{π}{4}$,$\frac{3π}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知sinα=$\frac{4}{5}$,且$\frac{π}{2}<α<π$,求sin(α+$\frac{π}{4}$)、cos(α+$\frac{π}{4}$)、tan(α+$\frac{π}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.如圖,△O′A′B′是水平放置的△OAB的直觀圖,則△OAB的面積是( 。
A.6B.3$\sqrt{2}$C.6$\sqrt{2}$D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.對(duì)于在給定區(qū)間Q上都有意義的兩個(gè)函數(shù)f(x)與g(x),如果對(duì)任意的x∈Q,均有|f(x)-g(x)|≤λ,則稱(chēng)函數(shù)f(x)與g(x)在Q上是λ相近的.現(xiàn)有如下命題:
(1)函數(shù)f(x)=$\sqrt{3}$sinx與g(x)=cosx在(0,π]上是1相近的;
(2)函數(shù)f(x)=2x+$\frac{2}{x}$與g(x)=x在[1,2]上是3相近的;
(3)函數(shù)f(x)=$\sqrt{{x}^{2}+1}$與g(x)=$\sqrt{{x}^{2}-2x+5}$在R上是$\sqrt{2}$相近的;
(4)若函數(shù)f(x)=logt(x-3t)與g(x)=logt($\frac{1}{x-t}$),(t>0,且t≠1)在[t+2,t+3]上是1相近的,則0<t≤$\frac{9-\sqrt{57}}{12}$.
其中的真命題有(2)(3)(4)(寫(xiě)出真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)集合A={(x,y)|y=2x-1,∈N*},B={(x,y)|y=ax2-ax+a,x∈N*},問(wèn)是否存在非零整數(shù)a,使A∩B=∅.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.以愛(ài)心曲線A:x2-|x|y+y2=c2(c>0)在x軸的交點(diǎn)F1、F2為橢圓B的焦點(diǎn),且橢圓B經(jīng)過(guò)A上到原點(diǎn)O的最大距離對(duì)應(yīng)的點(diǎn)M,則橢圓B的離心率為$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案