12.若函數(shù)f(x)=x+$\frac{1}{x-5}$(x>5)在x=a處取得最小值,則a=6.

分析 由題意可得x-5>0,可得f(x)=x+$\frac{1}{x-5}$=x-5+$\frac{1}{x-5}$+5≥2$\sqrt{(x-5)•\frac{1}{x-5}}$,由等號(hào)成立的條件可得a值.

解答 解:∵x>5,∴x-5>0,
∴f(x)=x+$\frac{1}{x-5}$=x-5+$\frac{1}{x-5}$+5
≥2$\sqrt{(x-5)•\frac{1}{x-5}}$+5=7,
當(dāng)且僅當(dāng)x-5=$\frac{1}{x-5}$即x=6時(shí)取等號(hào).
故答案為:6.

點(diǎn)評(píng) 本題考查基本不等式求最值,湊出可用基本不等式的形式是解決問題的關(guān)鍵,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知遞增數(shù)列{an}的通項(xiàng)公式是an=n2+kn+4,則實(shí)數(shù)k的取值范圍是( 。
A.(-2,+∞)B.(-3,+∞)C.(-3,-2)D.(-∞,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在△ABC中,若sinA=cosB=$\frac{1}{2}$,則∠C=( 。
A.45°B.60°C.30°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.解方程
(1)${9}^{{x}^{2}-3x}$=$\frac{1}{81}$
(2)log4(3-x)=log4(2x+1)+log4(3+x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.解下列不等式:
(1)-2x2+x<-3
(2)x2-x+$\frac{1}{4}$>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.在平面直角坐標(biāo)系xoy中,已知圓C:x2+y2-(6-2m)x-4my+5m2-6m=0,直線l經(jīng)過點(diǎn)(-1,1),若對(duì)任意的實(shí)數(shù)m,直線l被圓C截得的弦長(zhǎng)都是定值,則直線l的方程為2x+y+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.(1)計(jì)算:${0.027^{-\frac{1}{3}}}-{(-\frac{1}{7})^{-2}}+{(2\frac{7}{9})^{\frac{1}{2}}}-{(π-1)^0}+{100^{\frac{1}{2}lg9+lg2}}$;
(2)已知log23=a,log37=b,試用a,b表示log1456.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=$\vec a•\vec b+\frac{1}{2}$,其中$\vec a=(\sqrt{3}sinx-cosx,-1)$,$\vec b=(cosx,1)$.
(1)求函數(shù)f(x)的最小正周期及單調(diào)區(qū)間;
(2)設(shè)△ABC的內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,且c=3,f(C)=0,若sin(A+C)=2sinA,求a、b值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)△ABC的內(nèi)角A、B、C所對(duì)的邊長(zhǎng)分別為a、b、c,且(3b-c)cosA=acosC.
(1)求cosA的值;
(2)若△ABC的面積S=2$\sqrt{2}$,求△ABC的周長(zhǎng)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案