2.某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個式子的值都等于同一個常數(shù):
①sin213°+cos217°-sin 13°cos 17°;
②sin215°+cos215°-sin 15°cos 15°;
③sin218°+cos212°-sin 18°cos 12°;
④sin2(-18°)+cos248°-sin(-18°)cos (-48°);
⑤sin2(-25°)+cos255°-sin(-25°)cos (-55°).
(1)試從上述五個式子中選擇一個,求出這個常數(shù);
(2)根據(jù)(1)的計(jì)算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣為三角恒等式,并證明你的結(jié)論.

分析 方法一:(1)選擇②式,由倍角公式及特殊角的三角函數(shù)值即可得解.(2)發(fā)現(xiàn)推廣三角恒等式為sin2α+cos2(30°-α)-sin αcos(30°-α)=$\frac{3}{4}$,由三角函數(shù)中的恒等變換應(yīng)用展開即可證明.
方法二:(1)同方法一.(2)發(fā)現(xiàn)推廣三角恒等式為sin2α+cos2(30°-α)-sin αcos(30°-α)=$\frac{3}{4}$.由降冪公式,三角函數(shù)中的恒等變換應(yīng)用展開即可證明.

解答 (本小題滿分12分)
解:方法一:(1)選擇②式,計(jì)算如下:
sin215°+cos215°-sin 15°cos 15°=1-$\frac{1}{2}$sin 30°=1-$\frac{1}{4}$=$\frac{3}{4}$…(4分)
(2)三角恒等式為sin2α+cos2(30°-α)-sin αcos(30°-α)=$\frac{3}{4}$.
證明如下:
sin2α+cos2(30°-α)-sin αcos(30°-α)
=sin2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sin α)
=sin2α+$\frac{3}{4}$cos2α+$\frac{\sqrt{3}}{2}$sin αcos α+$\frac{1}{4}$sin2α-$\frac{\sqrt{3}}{2}$sin αcos α-$\frac{1}{2}$sin2α
=$\frac{3}{4}$sin2α+$\frac{3}{4}$cos2α=$\frac{3}{4}$…(12分)
方法二:(1)同方法一.
(2)三角恒等式為sin2α+cos2(30°-α)-sin αcos(30°-α)=$\frac{3}{4}$.
證明如下:
sin2α+cos2(30°-α)-sin αcos(30°-α)
=$\frac{1-cos2α}{2}$+$\frac{1+cos?60°-2α?}{2}$-sin α(cos 30°cos α+sin 30°sin α)
=$\frac{1}{2}$-$\frac{1}{2}$cos 2α+$\frac{1}{2}$+$\frac{1}{2}$(cos 60°cos 2α+sin 60°sin 2α)-$\frac{\sqrt{3}}{2}$sin αcos α-$\frac{1}{2}$sin2α
=$\frac{1}{2}$-$\frac{1}{2}$cos 2α+$\frac{1}{2}$+$\frac{1}{4}$cos 2α+$\frac{\sqrt{3}}{4}$sin 2α-$\frac{\sqrt{3}}{4}$sin 2α-$\frac{1}{4}$(1-cos 2α)
=1-$\frac{1}{4}$cos 2α-$\frac{1}{4}$+$\frac{1}{4}$cos 2α=$\frac{3}{4}$…(12分)

點(diǎn)評 本題主要考查了三角函數(shù)中的恒等變換應(yīng)用,歸納推理,屬于基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.某車間分批生產(chǎn)某種產(chǎn)品,每批的生產(chǎn)準(zhǔn)備費(fèi)用為400元.若每批生產(chǎn)x件,則平均倉儲時(shí)間為$\frac{x}{4}$天,且每件產(chǎn)品每天的倉儲費(fèi)用為1元.為使平均到每件產(chǎn)品的生產(chǎn)準(zhǔn)備費(fèi)用與倉儲費(fèi)用之和最小,每批應(yīng)生產(chǎn)產(chǎn)品( 。
A.20件B.30件C.40件D.50 件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求值:tan250°•sin80°•($\sqrt{3}$tan20°-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn+an=4,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)已知bn=2n-17(n∈N*),記cn=log2an-bn.求數(shù)列{cn}的前n項(xiàng)和Tn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知a+b=1,a>0,b>0.
(Ⅰ)求$\frac{1}{a}$+$\frac{4}$的最小值;
(Ⅱ)若不等式$\frac{1}{a}$+$\frac{4}$≥|2x-1|-|x+1|對任意a,b恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.(1)將五本不同的書分給四個人有幾種分法?
(2)將五本相同的書分給四個人有幾種分法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,設(shè)鈍角α的頂點(diǎn)位于坐標(biāo)原點(diǎn)O,始邊與x軸的非負(fù)半軸重合,終邊與單位圓O相交于點(diǎn)P,且點(diǎn)P的坐標(biāo)為(-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$).
(1)寫出sinα和cosα的值;
(2)求sin(2α+$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知f(x)=sin($\frac{π}{4}$x+$\frac{π}{3}$)-$\sqrt{3}$cos($\frac{π}{4}$x+$\frac{π}{4}$),則f(1)+f(2)+…+f(2008)+f(2009)=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在等比數(shù)列{an}中,其前n項(xiàng)和為Sn,已知a3=$\frac{3}{2}$,S3=$\frac{9}{2}$.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)是否存在正整數(shù)n,使得Sn-Sn+2=$\frac{3}{32}$成立,若存在,求出n的值,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案