分析 方法一:(1)選擇②式,由倍角公式及特殊角的三角函數(shù)值即可得解.(2)發(fā)現(xiàn)推廣三角恒等式為sin2α+cos2(30°-α)-sin αcos(30°-α)=$\frac{3}{4}$,由三角函數(shù)中的恒等變換應(yīng)用展開即可證明.
方法二:(1)同方法一.(2)發(fā)現(xiàn)推廣三角恒等式為sin2α+cos2(30°-α)-sin αcos(30°-α)=$\frac{3}{4}$.由降冪公式,三角函數(shù)中的恒等變換應(yīng)用展開即可證明.
解答 (本小題滿分12分)
解:方法一:(1)選擇②式,計(jì)算如下:
sin215°+cos215°-sin 15°cos 15°=1-$\frac{1}{2}$sin 30°=1-$\frac{1}{4}$=$\frac{3}{4}$…(4分)
(2)三角恒等式為sin2α+cos2(30°-α)-sin αcos(30°-α)=$\frac{3}{4}$.
證明如下:
sin2α+cos2(30°-α)-sin αcos(30°-α)
=sin2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sin α)
=sin2α+$\frac{3}{4}$cos2α+$\frac{\sqrt{3}}{2}$sin αcos α+$\frac{1}{4}$sin2α-$\frac{\sqrt{3}}{2}$sin αcos α-$\frac{1}{2}$sin2α
=$\frac{3}{4}$sin2α+$\frac{3}{4}$cos2α=$\frac{3}{4}$…(12分)
方法二:(1)同方法一.
(2)三角恒等式為sin2α+cos2(30°-α)-sin αcos(30°-α)=$\frac{3}{4}$.
證明如下:
sin2α+cos2(30°-α)-sin αcos(30°-α)
=$\frac{1-cos2α}{2}$+$\frac{1+cos?60°-2α?}{2}$-sin α(cos 30°cos α+sin 30°sin α)
=$\frac{1}{2}$-$\frac{1}{2}$cos 2α+$\frac{1}{2}$+$\frac{1}{2}$(cos 60°cos 2α+sin 60°sin 2α)-$\frac{\sqrt{3}}{2}$sin αcos α-$\frac{1}{2}$sin2α
=$\frac{1}{2}$-$\frac{1}{2}$cos 2α+$\frac{1}{2}$+$\frac{1}{4}$cos 2α+$\frac{\sqrt{3}}{4}$sin 2α-$\frac{\sqrt{3}}{4}$sin 2α-$\frac{1}{4}$(1-cos 2α)
=1-$\frac{1}{4}$cos 2α-$\frac{1}{4}$+$\frac{1}{4}$cos 2α=$\frac{3}{4}$…(12分)
點(diǎn)評 本題主要考查了三角函數(shù)中的恒等變換應(yīng)用,歸納推理,屬于基本知識的考查.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 20件 | B. | 30件 | C. | 40件 | D. | 50 件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com