17.已知a+b=1,a>0,b>0.
(Ⅰ)求$\frac{1}{a}$+$\frac{4}$的最小值;
(Ⅱ)若不等式$\frac{1}{a}$+$\frac{4}$≥|2x-1|-|x+1|對(duì)任意a,b恒成立,求x的取值范圍.

分析 (Ⅰ)由題意可得$\frac{1}{a}$+$\frac{4}$=($\frac{1}{a}$+$\frac{4}$)(a+b)=5+$\frac{a}$+$\frac{4a}$,由基本不等式可得;
(Ⅱ)問題轉(zhuǎn)化為|2x-1|-|x+1|≤9,去絕對(duì)值化為不等式組,解不等式組可得.

解答 解:(Ⅰ)∵a+b=1,a>0,b>0,
∴$\frac{1}{a}$+$\frac{4}$=($\frac{1}{a}$+$\frac{4}$)(a+b)=5+$\frac{a}$+$\frac{4a}$
≥5+2$\sqrt{\frac{a}•\frac{4a}}$=9,
當(dāng)且僅當(dāng)$\frac{a}$=$\frac{4a}$即a=$\frac{1}{3}$且b=$\frac{2}{3}$時(shí)取等號(hào),
∴$\frac{1}{a}$+$\frac{4}$的最小值為9;
(Ⅱ)若不等式$\frac{1}{a}$+$\frac{4}$≥|2x-1|-|x+1|對(duì)任意a,b恒成立,
則需|2x-1|-|x+1|≤9,可轉(zhuǎn)化為$\left\{\begin{array}{l}{x≤-1}\\{-(2x-1)+(x+1)≤9}\end{array}\right.$,
或$\left\{\begin{array}{l}{x≥\frac{1}{2}}\\{2x-1-(x+1)≤9}\end{array}\right.$或$\left\{\begin{array}{l}{-1<x<\frac{1}{2}}\\{-(2x-1)-(x+1)≤9}\end{array}\right.$,
分別解不等式組可得-7≤x≤-1,$\frac{1}{2}$≤x≤11,-1<x<$\frac{1}{2}$
綜合可得x的取值范圍為[-7,11]

點(diǎn)評(píng) 本題考查基本不等式求最值,涉及恒成立和絕對(duì)值不等式,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知f(x)=ex,g(x)=x-m(m∈R),設(shè)h(x)=f(x)•g(x).
(Ⅰ)求h(x)在[0,1]上的最大值.
(Ⅱ)當(dāng)m=0時(shí),試比較ef(x-2)與g(x)的大小,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知平行四邊形的三個(gè)頂點(diǎn)分別是(4,2)、B(5,7)、C(-3,4),則第四個(gè)頂點(diǎn)D的坐標(biāo)是(-4,-1),或(12,5),或(-2,9).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某普通高中為了了解學(xué)生的視力狀況,隨機(jī)抽查了100名高二年級(jí)學(xué)生和100名高三年級(jí)學(xué)生,對(duì)這些學(xué)生配戴眼鏡的度數(shù)(簡(jiǎn)稱:近視度數(shù))進(jìn)行統(tǒng)計(jì),得到高二學(xué)生的頻數(shù)分布表和高三學(xué)生頻率分布直方圖如下:
近視度數(shù)0-100100-200200-300300-400400以上
學(xué)生頻數(shù)304020100
將近視程度由低到高分為4個(gè)等級(jí):當(dāng)近視度數(shù)在0-100時(shí),稱為不近視,記作0;當(dāng)近視度數(shù)在100-200時(shí),稱為輕度近視,記作1;當(dāng)近視度數(shù)在200-400時(shí),稱為中度近視,記作2;當(dāng)近視度數(shù)在400以上時(shí),稱為高度近視,記作3.
(Ⅰ)從該校任選1名高二學(xué)生,估計(jì)該生近視程度未達(dá)到中度及以上的概率;
(Ⅱ)設(shè)a=0.0024,從該校任選1名高三學(xué)生,估計(jì)該生近視程度達(dá)到中度或中度以上的概率;
(Ⅲ)把頻率近似地看成概率,用隨機(jī)變量X,Y分別表示高二、高三年級(jí)學(xué)生的近視程度,若EX=EY,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若滿足條件$\left\{\begin{array}{l}x-y+2≥0\\ x+y-2≥0\\ kx-y-2k+1≥0\end{array}\right.$的點(diǎn)P(x,y)構(gòu)成三角形區(qū)域,則實(shí)數(shù)k的取值范圍是(-∞,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個(gè)式子的值都等于同一個(gè)常數(shù):
①sin213°+cos217°-sin 13°cos 17°;
②sin215°+cos215°-sin 15°cos 15°;
③sin218°+cos212°-sin 18°cos 12°;
④sin2(-18°)+cos248°-sin(-18°)cos (-48°);
⑤sin2(-25°)+cos255°-sin(-25°)cos (-55°).
(1)試從上述五個(gè)式子中選擇一個(gè),求出這個(gè)常數(shù);
(2)根據(jù)(1)的計(jì)算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣為三角恒等式,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知集合A={x|$\frac{2x-2}{x-2}$<1},集合B={x|x2+4x-5>0},集合C={x||x-m|<1,m∈R},求:
(1)A∩B.
(2)若(A∩B)⊆C,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)f(x)=$\frac{1}{1+x}$,數(shù)列{an}滿足:a1=$\frac{1}{2}$,an+1=f(an),n∈N*
(1)若λ1,λ2為方程f(x)=x的兩個(gè)不相等的實(shí)根,證明:數(shù)列{$\frac{{a}_{n}-{λ}_{1}}{{a}_{n}-{λ}_{2}}$}為等比數(shù)列;
(2)證明:存在實(shí)數(shù)m,使得對(duì)?n∈N*,a2n-1<a2n+1<m<a2n+2<a2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求y=$\sqrt{arccos(2x-1)}$的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案