【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,曲線過點,其參數(shù)方程為(為參數(shù), ),以為極點, 軸非負半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)已知曲線與曲線交于兩點,且,求實數(shù)的值.
【答案】(Ⅰ)(Ⅱ)或.
【解析】試題分析: (Ⅰ)根據(jù)加減相消法將曲線參數(shù)方程化為普通方程,利用將曲線(Ⅱ)先將直線參數(shù)方程轉化為(為參數(shù), ),再根據(jù)直線參數(shù)方程幾何意義由得,最后將直線參數(shù)方程代入,利用韋達定理得關于的方程,解得的值.
試題解析: (Ⅰ)曲線參數(shù)方程為,∴其普通方程,
由曲線的極坐標方程為,∴
∴,即曲線的直角坐標方程.
(Ⅱ)設、兩點所對應參數(shù)分別為,聯(lián)解得
要有兩個不同的交點,則,即,由韋達定理有
根據(jù)參數(shù)方程的幾何意義可知,
又由可得,即或
∴當時,有,符合題意.
當時,有,符合題意.
綜上所述,實數(shù)的值為或.
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項和為,且滿足,求數(shù)列的通項公式.勤于思考的小紅設計了下面兩種解題思路,請你選擇其中一種并將其補充完整.
思路1:先設的值為1,根據(jù)已知條件,計算出_________, __________, _________.
猜想: _______.
然后用數(shù)學歸納法證明.證明過程如下:
①當時,________________,猜想成立
②假設(N*)時,猜想成立,即_______.
那么,當時,由已知,得_________.
又,兩式相減并化簡,得_____________(用含的代數(shù)式表示).
所以,當時,猜想也成立.
根據(jù)①和②,可知猜想對任何N*都成立.
思路2:先設的值為1,根據(jù)已知條件,計算出_____________.
由已知,寫出與的關系式: _____________________,
兩式相減,得與的遞推關系式: ____________________.
整理: ____________.
發(fā)現(xiàn):數(shù)列是首項為________,公比為_______的等比數(shù)列.
得出:數(shù)列的通項公式____,進而得到____________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)當a=2時,求(x)在x∈[1,e2]時的最值(參考數(shù)據(jù):e2≈7.4);
(Ⅱ)若,有f(x)+g(x)≤0恒成立,求實數(shù)a的值;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(,為自然對數(shù)的底數(shù)),是的導函數(shù).
(Ⅰ)當時,求證:;
(Ⅱ)是否存在正整數(shù),使得對一切恒成立?若存在,求出的最大值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)是R上的奇函數(shù),當x>0時,解析式為f(x)=.
(1)求f(x)在R上的解析式;
(2)用定義證明f(x)在(0,+∞)上為減函數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P—ABCD的底面ABCD為矩形,PA⊥平面ABCD,點E是棱PD的中點,點F是PC的中點.
(Ⅰ)證明:PB∥平面AEC;
(Ⅱ)若底面ABCD為正方形,,求二面角C—AF—D大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=.
(1)求f(2)+f,f(3)+f的值;
(2)求證:f(x)+f是定值;
(3)求f(2)+f+f(3)+f+…++f的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com