16.如圖所示的長方體中,$AB=2\sqrt{6},AD=\sqrt{5},C{C_1}=2\sqrt{3},E,F(xiàn)$分別為AA1,A1B1的中點,則異面直線DE,BF所成角的大小為(  )
A.30°B.45°C.60°D.90°

分析 以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,利用向量法能求出異面直線DE,BF所成角的大。

解答 解以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,
D(0,0,0),E($\sqrt{5}$,0,$\sqrt{3}$),B($\sqrt{5}$,2$\sqrt{6}$,0),F(xiàn)($\sqrt{5}$,$\sqrt{6}$,2$\sqrt{3}$),
$\overrightarrow{DE}$=($\sqrt{5}$,0,$\sqrt{3}$),$\overrightarrow{BF}$=(0,-$\sqrt{6}$,2$\sqrt{3}$),
設(shè)異面直線DE,BF所成角為θ,
cosθ=$\frac{|\overrightarrow{DE}•\overrightarrow{BF}|}{|\overrightarrow{DE}|•|\overrightarrow{BF}|}$=$\frac{6}{2\sqrt{2}•3\sqrt{2}}$=$\frac{1}{2}$,
∴θ=60°.
∴異面直線DE,BF所成角的大小為60°.
故選:C.

點評 本題考查異面直線所成角的大小的求法,是基礎(chǔ)題,解題時要認真審題,注意向量法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}的前n項和為Sn
(Ⅰ)若數(shù)列{an}是等差數(shù)列,則滿足a5=0,S1=2S2+8,求數(shù)列{an}的通項公式;
(Ⅱ)若2Sn=3an-1,證明數(shù)列{an}是等比數(shù)列,并求其前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,角A,B,C的對邊分別為a,b,c,滿足2acosB=2c-b.
(1)求角A;
(2)若a是b,c的等比中項,判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知a=${∫}_{-2}^{2}$$\sqrt{4-{x}^{2}}$dx,則(ax+$\frac{1}{x}$)6展開式中的常數(shù)項為160π3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)函數(shù)f(x)=$\frac{{a}^{2}+asinx+2}{{a}^{2}+acosx+2}$(x∈R)的最大值為M(a),最小值為m(a),則M(a)•m(a)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=-mcos(ωx+φ)(m>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,點A,B,C為f(x)的圖象與坐標軸的交點,且A(1,0),D($\frac{5}{3}$,-$\frac{10}{3}$),$\overrightarrow{CD}$=$\frac{1}{2}$$\overrightarrow{DB}$,則m=5$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知定義在區(qū)間[-$\frac{3π}{2}$,π]上的函數(shù)y=f(x)的圖象關(guān)于直線x=-$\frac{π}{4}$對稱,當x∈[-$\frac{π}{4}$,π]時,函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$),且其圖象如圖所示.
(1)求函數(shù)y=f(x)在區(qū)間[-$\frac{3π}{2}$,π]上的表達式;
(2)求滿足f(x)=$\sqrt{3}$的實數(shù)x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{3}+ax+\frac{1}{2},(x≤1)}\\{2{a}^{x}-1,(x>1)}\end{array}\right.$(a>0且a≠1)在區(qū)間[$\frac{1}{2}$,+∞)內(nèi)單調(diào)遞減,則a的取值范圍是(0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,且2$\sqrt{{S}_{n}}$=an+1.
(I)求數(shù)列{an}的通項公式.
(Ⅱ)設(shè)bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,數(shù)列{bn}的前n項和為Tn,若對任意n∈N*,λ>Tn都成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案