5.若函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{3}+ax+\frac{1}{2},(x≤1)}\\{2{a}^{x}-1,(x>1)}\end{array}\right.$(a>0且a≠1)在區(qū)間[$\frac{1}{2}$,+∞)內(nèi)單調(diào)遞減,則a的取值范圍是(0,$\frac{1}{2}$].

分析 由題意利用 函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系可得 $\left\{\begin{array}{l}{0<a<1}\\{\frac{1}{2}≥\sqrt{\frac{a}{3}}}\\{-1+a+\frac{1}{2}≥2a-1}\end{array}\right.$,由此求得a的范圍.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{3}+ax+\frac{1}{2},(x≤1)}\\{2{a}^{x}-1,(x>1)}\end{array}\right.$(a>0且a≠1)在區(qū)間[$\frac{1}{2}$,+∞)內(nèi)單調(diào)遞減,
當(dāng)$\frac{1}{2}$≤x≤1時(shí),f′(x)=-3x2+a≤0,且-1+a+$\frac{1}{2}$≥2a-1,
∴$\left\{\begin{array}{l}{0<a<1}\\{\frac{1}{2}≥\sqrt{\frac{a}{3}}}\\{-1+a+\frac{1}{2}≥2a-1}\end{array}\right.$,求得0<a≤$\frac{1}{2}$,
故答案為:(0,$\frac{1}{2}$].

點(diǎn)評(píng) 本題主要考查分段函數(shù)的應(yīng)用,函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.“a>1”是當(dāng)“0<x≤2時(shí),2-2x≥logax成立”的(  )
A.必要不充分條件B.充分不必要條件
C.充要條件D.既非充分又非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖所示的長方體中,$AB=2\sqrt{6},AD=\sqrt{5},C{C_1}=2\sqrt{3},E,F(xiàn)$分別為AA1,A1B1的中點(diǎn),則異面直線DE,BF所成角的大小為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列函數(shù)在其定義域內(nèi)既是奇函數(shù)又是增函數(shù)的是( 。
A.y=2xB.y=x3+xC.$y=-\frac{1}{x}$D.y=-log2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在直角梯形ABCD中,已知AB∥CD,AB=3,BC=2,∠ABC=60°,動(dòng)點(diǎn)E,F(xiàn)分別在線段BC和CD上,且$\overrightarrow{BE}=λ\overrightarrow{BC}$,$\overrightarrow{DC}=2λ\overrightarrow{DF}$,則$\overrightarrow{AE}•\overrightarrow{AF}$的最小值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知F(x)=$\frac{1}{x+1}$,f(x)=F′(x),求${∫}_{0}^{1}$f(x)dx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知奇函數(shù)F(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}-\frac{4}{3},(x>0)}\\{f(x),(x<0)}\end{array}\right.$則F(f(log2$\frac{1}{3}$))=$-\frac{5}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)是定義在(-∞,0)∪(0,+∞)上的奇函數(shù),當(dāng)x<0時(shí),f(x)=$\frac{1+ln(-x)}{x+m}$(m為常數(shù))且f′(1)=0
(Ⅰ)求實(shí)數(shù)m的值.
(Ⅱ)若對任意的x∈[1,+∞),不等式f(x)≥$\frac{n}{x+1}$恒成立.求實(shí)數(shù)n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知i是虛數(shù)單位,z=$\frac{2-i}{2+i}$-i2016,且z的共軛復(fù)數(shù)為$\overline{z}$,則$\frac{\overline{z}}{z}$在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊答案