19.已知函數(shù)f(x)=kx-1,其中實(shí)數(shù)k隨機(jī)選自區(qū)間[-1,2].則對(duì)任意的x∈[-1,1],f(x)≤0的概率是( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

分析 求出對(duì)任意的x∈[-1,1],f(x)≤0的k的范圍,利用幾何概型求解概率即可.

解答 解:由題意,對(duì)?x∈[-1,1],f(x)≤0得,f(-1)≤0且f(1)≤0,即-k-1≤0且k-1≤0,即-1≤k≤1,∴所求的概率為$P=\frac{1-(-1)}{2-(-1)}=\frac{2}{3}$,
故選:C.

點(diǎn)評(píng) 本題考查函數(shù)恒成立,幾何概型的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知命題p:實(shí)數(shù)m滿足:方程$\frac{{x}^{2}}{m-3a}$+$\frac{{y}^{2}}{m-4a}$=1(a>0)表示雙曲線;命題q:實(shí)數(shù)m滿足方程$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{2-m}$=1表示焦點(diǎn)在y軸上的橢圓,且?p是?q的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知角θ滿足sinθ-2cosθ=0,則$\frac{{cos(\frac{3π}{2}+θ)+4cos(π-θ)}}{{sin(\frac{π}{2}-θ)-sin(π-θ)}}$=( 。
A.-2B.0C.$\frac{2}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知二次函數(shù)f(x)=x2+mx-3的兩個(gè)零點(diǎn)為-1和n,
(Ⅰ)求m,n的值;
(Ⅱ)若f(3)=f(2a-3),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知等比數(shù)列{an}是遞增數(shù)列,且${a_1}{a_{13}}+2{a_7}^2=4π$,則tan(a2a12)=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知集合A={1,2,3},B={2,3,4,5},全集U={1,2,3,4,5,6},則∁U(A∩B)=( 。
A.{2,3}B.{1,4,5}C.{1,4,5,6}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.執(zhí)行如圖所示的程序框圖,則輸出的i值為(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.在△ABC中,AB=AC,D為線段AC的中點(diǎn),若BD的長(zhǎng)為定值l,則△ABC面積的最大值為$\frac{2}{3}$$\sqrt{l}$(用l表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.執(zhí)行如圖所示的程序框圖,設(shè)當(dāng)箭頭a指向①處時(shí),輸出的S的值為m,當(dāng)箭頭a指向②處時(shí),輸出的S的值為n,則m+n=14.

查看答案和解析>>

同步練習(xí)冊(cè)答案