13.在平面幾何中有如下的結(jié)論:若正三角形ABC的內(nèi)切圓的面積為S1,外接圓的面積為S2,則$\frac{{S}_{1}}{{S}_{2}}$=$\frac{1}{4}$.推廣到空間幾何體中可以得到類似的結(jié)論;若正四面體ABCD的內(nèi)切球的體積為V1,外接球體積為V2,則$\frac{{V}_{2}}{{V}_{1}}$=27.

分析 平面圖形類比空間圖形,二維類比三維得到類比平面幾何的結(jié)論,則正四面體的外接球和內(nèi)切球的半徑之比是 3:1,從而得出正四面體P-ABC的內(nèi)切球體積為V1,外接球體積為V2之比.

解答 解:從平面圖形類比空間圖形,從二維類比三維,
可得如下結(jié)論:正四面體的外接球和內(nèi)切球的半徑之比是 3:1
故正四面體P-ABC的內(nèi)切球體積為V1,外接球體積為V2,則$\frac{{V}_{2}}{{V}_{1}}$=27.
故答案為:27.

點評 本題考查類比推理,考查學(xué)生的計算能力,正確類比是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,△ABC的兩條中線AD和BE相交于點G,且D,C,E,G四點共圓.
(Ⅰ)求證:∠BAD=∠ACG;
(Ⅱ)若GC=1,求AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.下列程序運行后輸出的結(jié)果為$\frac{13}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.現(xiàn)有60位學(xué)生,編號為1至60,若從中抽取6人,則用系統(tǒng)抽樣確定所抽的編號為( 。
A.2,14,26,38,42,56B.5,8,31,36,48,54
C.3,13,23,33,43,53D.5,10,15,20,25,30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.一直三棱柱的每條棱長都是3,且每個頂點都在球O的表面上,則球O的半徑為(  )
A.$\frac{\sqrt{21}}{2}$B.$\sqrt{6}$C.$\sqrt{7}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知正三角形ABC的邊長為4,將它沿高AD翻折,使點B與點C間的距離為2,則四面體ABCD外接球表面積為( 。
A.16πB.$\frac{32π}{3}$C.$\frac{52π}{3}$D.$\frac{13π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.歐拉在1748年給出了著名公式e=cosθ+isinθ(歐拉公式)是數(shù)學(xué)中最卓越的公式之一,其中,底數(shù)e=2.71828…,根據(jù)歐拉公式e=cosθ+isinθ,任何一個復(fù)數(shù)z=r(cosθ+isinθ),都可以表示成z=re的形式,我們把這種形式叫做復(fù)數(shù)的指數(shù)形式,若復(fù)數(shù)z1=2e${\;}^{i\frac{π}{3}}$,z2=2e${\;}^{i\frac{π}{2}}$,則復(fù)數(shù)z=$\frac{{z}_{1}}{{z}_{2}}$在復(fù)平面內(nèi)對應(yīng)的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.定義在R上函數(shù)f(x),且f(x)+f(-x)=0,當(dāng)x<0時,f(x)=($\frac{1}{4}$)x-8×($\frac{1}{2}$)x-1
(1)求f(x)的解析式;
(2)當(dāng)x∈[1,3]時,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}的各項均為正,a1=2,Sn是它的前n項和,且Sn=pan2+2pan(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{an•2n}的前n項和Tn
(3)求證:$\frac{{a}_{1}{a}_{2}…{a}_{n}}{({a}_{1}-1)({a}_{2}-1)…({a}_{n}-1)}$>$\sqrt{2n+1}$.

查看答案和解析>>

同步練習(xí)冊答案