1.已知f(x)=2ax-$\frac{x}$+lnx在x=1與x=$\frac{1}{2}$處都取得極值.
(1)求a,b的值;
(2)若對x∈[$\frac{1}{4}$,1]時,求f(x)的單調(diào)區(qū)間.

分析 (1)求出函數(shù)的導(dǎo)數(shù),計(jì)算f′(1),f′($\frac{1}{2}$),得到關(guān)于a,b的方程組,解出即可;(2)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的方程,求出函數(shù)的單調(diào)區(qū)間即可.

解答 解:(1)∵$f(x)=2ax-\frac{x}+lnx$,
∴$f'(x)=2a+\frac{x^2}+\frac{1}{x}$,
∵$f(x)=2ax-\frac{x}+lnx$在x=1與$x=\frac{1}{2}$處都取得極值,
∴f'(1)=0,$f'(\frac{1}{2})=0$.
∴$\left\{\begin{array}{l}2a+b+1=0\\ 2a+4b+2=0\end{array}\right.$,
即$a=b=-\frac{1}{3}$--------------(7分)
(2)由(1)可知$f(x)=-\frac{2}{3}x+\frac{1}{3x}+lnx$,
令$f'(x)=-\frac{2}{3}-\frac{1}{{3{x^2}}}+\frac{1}{x}=-\frac{(2x-1)(x-1)}{{3{x^2}}}=0$,
得x=1或$x=\frac{1}{2}$,
∵$x∈[\frac{1}{4},1]$,
∴f(x)在$[\frac{1}{4},\frac{1}{2}]$上單調(diào)遞減,在$[\frac{1}{2},1]$上單調(diào)遞增.-------------(12分)

點(diǎn)評 本題考查了函數(shù)的極值的應(yīng)用,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)的單調(diào)性問題,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在平面直角坐標(biāo)系xoy中,直線$\left\{\begin{array}{l}x={x_0}+tcosα\\ y=tsinα\end{array}$,(t為參數(shù))與拋物線y2=2px(p>0)相交于橫坐標(biāo)分別為x1,x2的A,B兩點(diǎn)
(1)求證:x02=x1x2;
(2)若OA⊥OB,求x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在正四棱錐P-ABCD中,M,N分別為PA,PB的中點(diǎn),且側(cè)面與底面所成二面角的正切值為$\sqrt{2}$,則異面直線DM與AN所成角的余弦值為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=ax-lnx.
(Ⅰ)討論f(x)的單調(diào)區(qū)間;
(Ⅱ)若不等式f(x)>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)y=sin(2x-$\frac{π}{6}$)的最小正周期是(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知等差數(shù)列{an}中,a2=7,a4=15,則前5項(xiàng)的和S5=( 。
A.55B.65C.95D.110

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖所示,在長方體ABCD-A1B1C1D1中,AB=2,AD=3,AA1=2$\sqrt{6}$,點(diǎn)P是B1C的三等分點(diǎn)且靠近點(diǎn)C,則異面直線AP和DD1所成的角為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{5π}{12}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.點(diǎn)P(5,-2)關(guān)于直線x-y+5=0 對稱的點(diǎn)Q的坐標(biāo)(-7,10).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在斜三棱柱ABC-A1B1C1中,底面ABC是正三角形,E是AB中點(diǎn),A1E⊥平面ABC.
(I)證明:BC1∥平面 A1EC;
(II)若A1A⊥A1B,且AB=2.
①求點(diǎn)B到平面ACC1A1的距離;
②求直線CB1與平面ACC1A1所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案