A. | $\sqrt{7}$ | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | 1 |
分析 直線y=kx+1與雙曲線x2-$\frac{y^2}{4}$=1聯(lián)立可得(4-k2)x2-2kx-5=0,利用韋達定理結(jié)合弦長公式建立方程,即可求出k的值.
解答 解:直線y=kx+1與雙曲線x2-$\frac{y^2}{4}$=1聯(lián)立可得(4-k2)x2-2kx-5=0,
設(shè)A(x1,y1),B(x2,y2),則x1+x2=$\frac{2k}{4-{k}^{2}}$,x1x2=-$\frac{5}{4-{k}^{2}}$,
∴|AB|=$\sqrt{1+{k}^{2}}$•$\sqrt{(\frac{2k}{4-{k}^{2}})^{2}+\frac{20}{4-{k}^{2}}}$=8$\sqrt{2}$,
解得k=$\sqrt{3}$.
故選B.
點評 本題考查直線與雙曲線的位置關(guān)系,考查韋達定理的運用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | z的最小值為-1 | B. | |OP|的最小值為$\sqrt{6}$ | C. | z的最大值為-15 | D. | |PQ|的最大值為$2\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要 | B. | 必要不充分 | ||
C. | 充要 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | m-n-2=0 | B. | m+n-2=0 | C. | m+n-4=0 | D. | m-n+4=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y′=3x2-$\frac{1}{{x}^{2}}$ | B. | y′=3x2-$\frac{1}{x}$ | C. | y′=3x2+$\frac{1}{{x}^{2}}$ | D. | y′=3x2+$\frac{1}{x}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
年級 | 高一 | 高二 | 高三 |
數(shù)量 | 50 | 150 | 100 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com