分析 (1)賦值x=y=1,x=y=-1,y=$\frac{1}{x}$,即可證明結(jié)論;
(2)令y=-1,可得f(-x)=f(x)+f(-1)=f(x),即可判斷f(x)的奇偶性;
(3)f($\frac{1}{x}$)-f(2x-1)≥0,f(x)在(0,+∞)上單調(diào)遞增,f(x)是偶函數(shù),可得|$\frac{1}{x}$|≥|2x-1|,即可得出結(jié)論.
解答 (1)證明:令x=y=1,可得f(1)=f(1)+f(1),∴f(1)=0,
令x=y=-1,可得f(1)=f(-1)+f(-1),∴f(-1)=0,
令y=$\frac{1}{x}$,可得f(1)=f(x)+f($\frac{1}{x}$),∴f($\frac{1}{x}$)=-f(x)(x≠0);
(2)解:令y=-1,可得f(-x)=f(x)+f(-1)=f(x),
∴函數(shù)f(x)是偶函數(shù);
(3)解:∵f($\frac{1}{x}$)-f(2x-1)≥0,
∴f($\frac{1}{x}$)≥f(2x-1),
∵f(x)在(0,+∞)上單調(diào)遞增,f(x)是偶函數(shù)
∴|$\frac{1}{x}$|≥|2x-1|,
∴-1≤x(2x-1)≤1,
∴-$\frac{1}{2}$≤x≤1,
∵x≠0,2x-1≠0
∴不等式的解集為{x|-$\frac{1}{2}$≤x≤1且x$≠0,x≠\frac{1}{2}$}.
點(diǎn)評 本題考查賦值法的運(yùn)用,考查函數(shù)的奇偶性,考查解不等式,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | -$\frac{3}{4}$ | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | x1 | x2 | … | xn |
p | p1 | p2 | pn |
y | y1 | y2 | … | ym |
p | p${\;}_{1}^{′}$ | p${\;}_{2}^{′}$ | … | p${\;}_{m}^{′}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com