x | x1 | x2 | … | xn |
p | p1 | p2 | pn |
y | y1 | y2 | … | ym |
p | p${\;}_{1}^{′}$ | p${\;}_{2}^{′}$ | … | p${\;}_{m}^{′}$ |
分析 (1)由已知得x+y的可能取值為0,1,2,3,4,5,分別求出相應的概率,由此能求出x+y的分布列和E(x+y).
(2)先猜想E(x+y)=E(x)+E(y),再利用離散型隨機變量的數(shù)學期望計算公式進行證明.
解答 解:(1)由已知得x+y的可能取值為0,1,2,3,4,5,
P(x+y=0)=${C}_{3}^{0}(\frac{1}{2})^{3}•{C}_{2}^{0}(\frac{1}{3})^{2}$=$\frac{1}{72}$,
P(x+y=1)=${C}_{3}^{1}(\frac{1}{2})(\frac{1}{2})^{2}{C}_{2}^{2}(\frac{1}{3})^{2}+{C}_{3}^{0}(\frac{1}{2})^{3}{C}_{2}^{1}(\frac{2}{3})(\frac{1}{3})$=$\frac{7}{72}$,
P(x+y=2)=${C}_{3}^{2}(\frac{1}{2})^{2}(\frac{1}{2}){C}_{2}^{0}(\frac{1}{3})^{2}+{C}_{3}^{0}(\frac{1}{2})^{3}{C}_{2}^{2}(\frac{2}{3})^{2}$+${C}_{3}^{1}(\frac{1}{2})(\frac{1}{2})^{2}{C}_{2}^{1}(\frac{2}{3})(\frac{1}{3})$=$\frac{19}{72}$,
P(x+y=3)=${C}_{3}^{3}(\frac{1}{2})^{3}{C}_{2}^{0}(\frac{1}{3})^{2}+{C}_{3}^{2}(\frac{1}{2})^{2}(\frac{1}{2}){C}_{2}^{1}(\frac{2}{3})(\frac{1}{3})$+${C}_{3}^{1}(\frac{1}{2})(\frac{1}{2})^{2}{C}_{2}^{2}(\frac{2}{3})^{2}$=$\frac{25}{72}$,
P(x+y=4)=${C}_{3}^{3}(\frac{1}{2})^{3}{C}_{2}^{1}(\frac{2}{3})(\frac{1}{3})+{C}_{3}^{2}(\frac{1}{2})^{2}(\frac{1}{2}){C}_{2}^{2}(\frac{2}{3})^{2}$=$\frac{16}{72}$,
P(x+y=5)=${C}_{3}^{3}(\frac{1}{2})^{3}{C}_{2}^{2}(\frac{2}{3})^{2}$=$\frac{4}{72}$,
∴x+y的分布列為:
x+y | 0 | 1 | 2 | 3 | 4 | 5 |
p | $\frac{1}{72}$ | $\frac{7}{72}$ | $\frac{19}{72}$ | $\frac{25}{72}$ | $\frac{16}{72}$ | $\frac{4}{72}$ |
點評 本題考查離散型隨機變量的分布列、數(shù)學期望的求法及應用,是中檔題,解題時要認真審題,注意離散型隨機變量的數(shù)學期望的計算公式及性質的合理運用.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,1) | B. | (1,2) | C. | (2,3) | D. | (3,4) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -$\frac{3}{4}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com