8.甲乙兩人相約打靶,甲射擊3次,每次射擊的命中率為$\frac{1}{2}$,乙射擊2次,每次射擊的命中率為$\frac{2}{3}$,記甲命中的次數(shù)為x,乙命中的次數(shù)為y
(1)求x+y的分布列和E(x+y)
(2)猜想兩個相互獨立的變量x,y的期望與x+y的期望間的關系,并證明你的猜想.
其中,x的分布列為:
xx1x2xn
pp1p2pn
y的分布列為:
yy1y2ym
pp${\;}_{1}^{′}$p${\;}_{2}^{′}$p${\;}_{m}^{′}$

分析 (1)由已知得x+y的可能取值為0,1,2,3,4,5,分別求出相應的概率,由此能求出x+y的分布列和E(x+y).
(2)先猜想E(x+y)=E(x)+E(y),再利用離散型隨機變量的數(shù)學期望計算公式進行證明.

解答 解:(1)由已知得x+y的可能取值為0,1,2,3,4,5,
P(x+y=0)=${C}_{3}^{0}(\frac{1}{2})^{3}•{C}_{2}^{0}(\frac{1}{3})^{2}$=$\frac{1}{72}$,
P(x+y=1)=${C}_{3}^{1}(\frac{1}{2})(\frac{1}{2})^{2}{C}_{2}^{2}(\frac{1}{3})^{2}+{C}_{3}^{0}(\frac{1}{2})^{3}{C}_{2}^{1}(\frac{2}{3})(\frac{1}{3})$=$\frac{7}{72}$,
P(x+y=2)=${C}_{3}^{2}(\frac{1}{2})^{2}(\frac{1}{2}){C}_{2}^{0}(\frac{1}{3})^{2}+{C}_{3}^{0}(\frac{1}{2})^{3}{C}_{2}^{2}(\frac{2}{3})^{2}$+${C}_{3}^{1}(\frac{1}{2})(\frac{1}{2})^{2}{C}_{2}^{1}(\frac{2}{3})(\frac{1}{3})$=$\frac{19}{72}$,
P(x+y=3)=${C}_{3}^{3}(\frac{1}{2})^{3}{C}_{2}^{0}(\frac{1}{3})^{2}+{C}_{3}^{2}(\frac{1}{2})^{2}(\frac{1}{2}){C}_{2}^{1}(\frac{2}{3})(\frac{1}{3})$+${C}_{3}^{1}(\frac{1}{2})(\frac{1}{2})^{2}{C}_{2}^{2}(\frac{2}{3})^{2}$=$\frac{25}{72}$,
P(x+y=4)=${C}_{3}^{3}(\frac{1}{2})^{3}{C}_{2}^{1}(\frac{2}{3})(\frac{1}{3})+{C}_{3}^{2}(\frac{1}{2})^{2}(\frac{1}{2}){C}_{2}^{2}(\frac{2}{3})^{2}$=$\frac{16}{72}$,
P(x+y=5)=${C}_{3}^{3}(\frac{1}{2})^{3}{C}_{2}^{2}(\frac{2}{3})^{2}$=$\frac{4}{72}$,
∴x+y的分布列為:

x+y012345
p$\frac{1}{72}$$\frac{7}{72}$$\frac{19}{72}$$\frac{25}{72}$$\frac{16}{72}$$\frac{4}{72}$
E(x+y)=$0×\frac{1}{72}+1×\frac{7}{72}+2×\frac{19}{72}+3×\frac{25}{72}$+$4×\frac{16}{72}+5×\frac{4}{72}$=$\frac{204}{72}=\frac{17}{6}$.
(2)猜想:E(x+y)=E(x)+E(y)
證明:∵$P(ξ={x_i}+{y_j})={p_i}{p_j}^/\;\;(1≤i≤n,1≤j≤m)$
∴E(x+y)=(x1+y1)×p1p1′+$({x}_{1}+{y}_{2}){p}_{1}{{p}_{2}}^{'}$+$({x}_{1}+{y}_{3}){p}_{1}{{p}_{3}}^{'}$…+(x1+ym)p1pm
+$({x}_{2}+{y}_{1}){p}_{2}{{p}_{1}}^{'}$+$({x}_{2}+{y}_{2}){p}_{2}{{p}_{2}}^{'}+({x}_{2}+{y}_{3}){p}_{2}{{p}_{3}}^{'}$+…+(x2+ym)×p2pm
+…+$({x}_{n}+{y}_{1}){p}_{n}{{p}_{1}}^{'}+({x}_{n}+{y}_{2}){p}_{n}{{p}_{2}}^{'}$+(xn+y3)pnp3′+…+(xn+ym)pnpm
=${x}_{1}{p}_{1}{{p}_{1}}^{'}+{y}_{1}{p}_{1}{{p}_{1}}^{'}$+${x}_{1}{p}_{1}{{p}_{2}}^{'}+{y}_{2}{p}_{1}{{p}_{2}}^{'}+…+$${x}_{2}{p}_{2}{{p}_{m}}^{'}+{{y}_{m}{p}_{1}{p}_{m}}^{'}$
+…+${x}_{2}{p}_{2}{{p}_{1}}^{'}+{y}_{1}{p}_{2}{{p}_{1}}^{'}+{x}_{2}{p}_{2}{{p}_{2}}^{'}+…+$${x}_{2}{p}_{2}{{p}_{m}}^{'}+{y}_{m}{p}_{2}{{p}_{{\;}^{\;}m}}^{'}$
+…+${x}_{n}{p}_{n}{{p}_{1}}^{'}$+${y}_{1}{p}_{n}{{p}_{1}}^{'}+{x}_{n}{p}_{n}{{p}_{2}}^{'}+{y}_{2}{p}_{n}{{p}_{2}}^{'}+…+$${x}_{n}{p}_{n}{{p}_{m}}^{'}+{y}_{m}{p}_{n}{{p}_{m}}^{'}$
=${x}_{1}{p}_{1}({{p}_{1}}^{'}+{{p}_{2}}^{'}+…+{{p}_{m}}^{'})$+${p}_{1}({y}_{1}{{p}_{1}}^{'}+{y}_{2}{{p}_{2}}^{'}+…+{y}_{m}{{p}_{m}}^{'})$
+${x}_{2}{p}_{2}({{p}_{1}}^{'}+{{p}_{2}}^{'}+…+{{p}_{m}}^{'})+{p}_{2}$(${y}_{1}{{p}_{1}}^{'}+{y}_{2}{{p}_{2}}^{'}+…+{y}_{m}{{p}_{m}}^{'}$)
+…+${x}_{n}{p}_{n}({{p}_{1}}^{'}+{{p}_{n}}^{'}+…+{{p}_{m}}^{'})+{p}_{2}$(${y}_{1}{{p}_{1}}^{'}+{y}_{2}{{p}_{2}}^{'}+…+{y}_{m}{{p}_{m}}^{'}$)
=(x1p1+x2p2+…+xnpn)+$({y}_{1}{{p}_{1}}^{'}+{y}_{2}{{p}_{2}}^{'}+…+{y}_{m}{{p}_{m}}^{'})$(p1+p2+…+pn
=E(x)+E(y).

點評 本題考查離散型隨機變量的分布列、數(shù)學期望的求法及應用,是中檔題,解題時要認真審題,注意離散型隨機變量的數(shù)學期望的計算公式及性質的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

18.若P為△ABC內一點,且滿足$\overrightarrow{PA}$+2$\overrightarrow{PB}$+3$\overrightarrow{PC}$=0,則△ABC的面積與△APC的面積之比為1:3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.設函數(shù)y=f(x)(x∈R,且x≠0)對任意的非零實數(shù)x,y,都有f(xy)=f(x)+f(y)成立.
(1)求證:f(1)=f(-1)=0,且f($\frac{1}{x}$)=-f(x)(x≠0);
(2)判斷f(x)的奇偶性;
(3)若f(x)在(0,+∞)上單調遞增,解不等式f($\frac{1}{x}$)-f(2x-1)≥0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=exsinx,求函數(shù)f(x)的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知圓內接四邊形ABCD中,AB=1,BC=3,AD=CD=2,則$\overrightarrow{AB}$•$\overrightarrow{CD}$=$-\frac{13}{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=exlnx-aex(a≠0)
(1)若函數(shù)f(x)的圖象在點(1,f(1))處的切線與直線x-ey-1=0垂直,求實數(shù)a的值
(2)若函數(shù)f(x)在區(qū)間(0,+∞)上是單調函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.用二分法求函數(shù)f(x)=2x-x3的零點,以下四個區(qū)間中,可以作為起始區(qū)間的是( 。
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.畫出函數(shù)y=|x2-1|的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知λ為實數(shù),向量$\overrightarrow{a}$=(1-2λ,-1),$\overrightarrow$=(1,2),若$\overrightarrow{a}⊥\overrightarrow$,則λ等于( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{3}{4}$D.$\frac{3}{4}$

查看答案和解析>>

同步練習冊答案