12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x-1},x>1}\\{tan(\frac{π}{3}x),x≤1}\end{array}\right.$,則f($\frac{1}{f(2)}$)=(  )
A.-$\sqrt{3}$B.-$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{3}$D.$\sqrt{3}$

分析 由已知先求f(2),根據(jù)復(fù)合函數(shù)的解析式再求f($\frac{1}{2}$),利用特殊角的三角函數(shù)值即可求值得解.

解答 解:∵f(x)=$\left\{\begin{array}{l}{{2}^{x-1},x>1}\\{tan(\frac{π}{3}x),x≤1}\end{array}\right.$,
∴f(2)=2,
∴f($\frac{1}{f(2)}$)=f($\frac{1}{2}$)=tan$\frac{π}{6}$=$\frac{\sqrt{3}}{3}$,
故選:C.

點(diǎn)評(píng) 本題主要考查了復(fù)合函數(shù)求值,考查了特殊角的三角函數(shù)值的應(yīng)用,考查了分類討論思想的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知f(x)是奇函數(shù),g(x)=$\frac{2+f(x)}{f(x)}$,若g(2)=3,則g(-2)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若直線l1:x+ay+6=0與l2:(a-2)x+3y+2a=0平行,則l1與l2間的距離為( 。
A.$\sqrt{2}$B.$\frac{8\sqrt{2}}{3}$C.$\sqrt{3}$D.$\frac{8\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)i是虛數(shù)但單位,則復(fù)數(shù)$z=\frac{2i+3}{1-i}$的共軛復(fù)數(shù)的虛部為( 。
A.$-\frac{1}{2}$B.$-\frac{5}{2}$C.$\frac{1}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖的框圖是一古代數(shù)學(xué)家的一個(gè)算法的程序框圖,它輸出的結(jié)果S表示( 。
A.a0+a1+a2+a3的值B.a3+a2x0+a1x02+a0x03的值
C.a0+a1x0+a2x02+a3x03的值D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某高校從2015年招收的大一新生中,隨機(jī)抽取60名學(xué)生,將他們的2015年高考數(shù)學(xué)成績(滿分150分,成績均不低于90分的整數(shù))分成六段[90,100),[100,110)…[140,150),后得到如圖所示的頻率分布直方圖.
(1)求圖中實(shí)數(shù)a的值;
(2)若該校2015年招收的大一新生共有960人,試估計(jì)該校招收的大一新生2015年高考數(shù)學(xué)成績不低于120分的人數(shù);
(3)若用分層抽樣的方法從數(shù)學(xué)成績?cè)赱90,100)與[140,150]兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中抽取一個(gè)容量為6的樣本,將該樣本看成一個(gè)總體,從中任取2人,求至少有1人在分?jǐn)?shù)段[90,100)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知{an}是等差數(shù)列,a10=17,其前10項(xiàng)的和S10=80,則其公差d=(  )
A.2B.-2C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知MP、OM、AT分別為θ(0<θ<$\frac{π}{2}$)的正弦弦、余弦線、正切線,若OM<MP<AT,則θ∈(  )
A.(0,$\frac{π}{4}$)B.(0,$\frac{π}{3}$)C.($\frac{π}{4}$,$\frac{π}{2}$)D.($\frac{π}{6}$,$\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合A={3,log2(a2+3a)},B={a,b},若A∩B={2},則集合A∪B所有元素的和等于( 。
A.1B.5C.6D.1或6

查看答案和解析>>

同步練習(xí)冊(cè)答案