20.設(shè)i是虛數(shù)但單位,則復(fù)數(shù)$z=\frac{2i+3}{1-i}$的共軛復(fù)數(shù)的虛部為( 。
A.$-\frac{1}{2}$B.$-\frac{5}{2}$C.$\frac{1}{2}$D.$\frac{5}{2}$

分析 直接由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)復(fù)數(shù)z,求出復(fù)數(shù)z的共軛復(fù)數(shù),則答案可求.

解答 解:∵$z=\frac{2i+3}{1-i}$=$\frac{(2i+3)(1+i)}{(1-i)(1+i)}=\frac{2i-2+3+3i}{2}=\frac{1+5i}{2}$=$\frac{1}{2}+\frac{5}{2}i$,
∴復(fù)數(shù)$z=\frac{2i+3}{1-i}$的共軛復(fù)數(shù)為$\frac{1}{2}-\frac{5}{2}i$.
則復(fù)數(shù)$z=\frac{2i+3}{1-i}$的共軛復(fù)數(shù)的虛部為:$-\frac{5}{2}$.
故選:B.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了共軛復(fù)數(shù)的求法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知1+zi=z-2i,則復(fù)數(shù)z的虛部為( 。
A.-$\frac{3}{2}$B.$\frac{3}{2}$C.-$\frac{3}{2}$iD.$\frac{3}{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=sin$\frac{x}{2}$cos$\frac{x}{2}$+$\sqrt{3}$cos2$\frac{x}{2}$.
(1)求當(dāng)x∈[0,π]時(shí),f(x)的零點(diǎn);
(2)求f(x)的值域;
(3)將f(x)的圖象經(jīng)過怎樣的平移,使得平移后的圖象關(guān)于原點(diǎn)對(duì)稱?(只需說出一種平移途徑即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.給出命題p:若平面α與平面β不重合,且平面α內(nèi)有不共線的三點(diǎn)到平面β的距離相等,則α∥β;命題q:向量$\overrightarrow{a}$=(-2,-1),$\overrightarrow$=(λ,1)的夾角為鈍角的充要條件為λ∈(-$\frac{1}{2}$,+∞).關(guān)于以上兩個(gè)命題,下列結(jié)論中正確的是( 。
A.命題“p∨q”為假B.命題“p∧q”為真C.命題“p∨¬q”為假D.命題“p∧¬q”為真

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.歐位在1748年給出的著名公式e=cosθ+isinθ(歐拉公式)是數(shù)學(xué)中最卓越的公式之一,其中,底數(shù)e=2.71828…,根據(jù)歐拉公式e=cosθ-isinθ.任何一個(gè)復(fù)數(shù)z=r(cosθ+isinθ)都呆以表示成z=reiz的形式,我們把這種形式叫做復(fù)數(shù)的指數(shù)形式,若復(fù)數(shù)z1=2ei${\;}^{\frac{π}{3}}$,z2=ei${\;}^{\frac{π}{2}}$,則復(fù)數(shù)z=$\frac{{z}_{1}}{{z}_{2}}$在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.方程ex=5-x的根所在的大致區(qū)間為( 。
A.($\frac{1}{2}$,1)B.(1,$\frac{3}{2}$)C.($\frac{3}{2}$,2)D.(2,$\frac{5}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x-1},x>1}\\{tan(\frac{π}{3}x),x≤1}\end{array}\right.$,則f($\frac{1}{f(2)}$)=( 。
A.-$\sqrt{3}$B.-$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合A={x∈N|x≤6},B={x∈R|x2-4x>0},則A∩B=( 。
A.{4,5,6}B.{5,6}C.{x|4<x≤6}D.{x|x<0或4<x≤6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知正方形ABCD的邊長(zhǎng)為2,點(diǎn)P、Q分別是邊AB、BC邊上的動(dòng)點(diǎn),且$\overrightarrow{DP}⊥\overrightarrow{AQ}$,則$\overrightarrow{CP}•\overrightarrow{QP}$的最小值為3.

查看答案和解析>>

同步練習(xí)冊(cè)答案