分析 (1)利用三角函數(shù)恒等變換的應(yīng)用化簡(jiǎn)已知等式可得sinA-$\sqrt{3}$acosC=0,利用正弦定理,兩角差的正弦函數(shù)公式可得2sin(C-$\frac{π}{3}$)=0,結(jié)合C的范圍,即可求得C的值.
(2)由已知及正弦定理,三角函數(shù)的恒等變換的應(yīng)用可得f(x)=a+b=2sin(x+$\frac{π}{6}$),由x∈[$\frac{π}{6}$,$\frac{π}{2}$],根據(jù)正弦函數(shù)的性質(zhì)即可得解f(x)的取值范圍.
解答 解:(1)cosBsinC+($\sqrt{3}$a-sinB)cos(A+B)=0
可得:cosBsinC-($\sqrt{3}$a-sinB)cosC=0
即:sinA-$\sqrt{3}$acosC=0.
由正弦定理可知:$\frac{a}{sinA}=\frac{c}{sinC}$,
∴$\frac{asinC}{c}$-$\sqrt{3}$acosC=0,
∴asinC-$\sqrt{3}$accosC=0,c=1,
∴sinC-$\sqrt{3}$cosC=0,可得2sin(C-$\frac{π}{3}$)=0,C是三角形內(nèi)角,
∴C=$\frac{π}{3}$.
(2)∵A=x,c=1,
∴由正弦定理可得:$\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC}=\frac{1}{\frac{\sqrt{3}}{2}}$,
∴f(x)=a+b=$\frac{2\sqrt{3}}{3}$sinx+$\frac{2\sqrt{3}}{3}$sin($\frac{2π}{3}$-x)=$\frac{2\sqrt{3}}{3}$×$\sqrt{3}$($\frac{\sqrt{3}}{2}$sinx+$\frac{1}{2}$cosx)=2sin(x+$\frac{π}{6}$).
∵x∈[$\frac{π}{6}$,$\frac{π}{2}$],
∴x+$\frac{π}{6}$∈[$\frac{π}{3}$,$\frac{2π}{3}$],
∴f(x)=2sin(x+$\frac{π}{6}$)∈[$\sqrt{3}$,2].
點(diǎn)評(píng) 本題主要考查了三角函數(shù)恒等變換的應(yīng)用,正弦定理,兩角差的正弦函數(shù)公式,正弦函數(shù)的圖象和性質(zhì)的應(yīng)用,考查了計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{{a^2}+{b^2}}≤0$ | B. | a2+b2>0 | C. | ab≠0 | D. | a+b=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com