解答:
解:(I)當(dāng)k=1時,函數(shù)f(x)=(x+1)e
x,f′(x)=(x+2)e
x,
令f′(x)=0,解得x=-2.
令f′(x)>0,解得x>-2,∴函數(shù)f(x)在區(qū)間(-2,+∞)上單調(diào)遞增;
令f′(x)<0,解得x<-2,∴函數(shù)f(x)在區(qū)間(-∞,-2)上單調(diào)遞減.
∴當(dāng)x=-2時,函數(shù)f(x)取得極小值,f(-2)=
-.
(II)f′(x)=(kx+k+1)e
kx.
①當(dāng)k=0時,f′(x)=1>0,函數(shù)f(x)單調(diào)遞增;
②當(dāng)k>0時,令f′(x)=
k(x+)e
kx=0,解得x=-
.當(dāng)
x>-時,
f′(x)>0,函數(shù)f(x)單調(diào)遞增;當(dāng)x<
-時,f′(x)<0,函數(shù)f(x)單調(diào)遞減.
③當(dāng)k<0時,令f′(x)=
k(x+)e
kx=0,解得x=-
.當(dāng)
x<-時,
f′(x)>0,函數(shù)f(x)單調(diào)遞增;當(dāng)x>
-時,f′(x)<0,函數(shù)f(x)單調(diào)遞減.
綜上可得:①當(dāng)k=0時,函數(shù)f(x)單調(diào)遞增;
②當(dāng)k>0時,當(dāng)
x>-時,函數(shù)f(x)單調(diào)遞增;當(dāng)x<
-時,函數(shù)f(x)單調(diào)遞減;
③當(dāng)k<0時,當(dāng)
x<-時,函數(shù)f(x)單調(diào)遞增;當(dāng)x>
-時,函數(shù)f(x)單調(diào)遞減.
(III)由(II)可得:f′(x)=(kx+k+1)e
kx.
函數(shù)f(x)在區(qū)間(0,1)上是單調(diào)增函數(shù)?f′(x)≥0在區(qū)間(0,1)上恒成立,但是f′(x)不恒等于0.
∴g(x)=kx+k+1≥0在區(qū)間(0,1)上恒成立,但是不恒等于0.
∴g(x)=
,即
,解得
k≥-.
滿足f′(x)≥0在區(qū)間(0,1)上恒成立,但是f′(x)不恒等于0.
因此實數(shù)k的取值范圍是
[-,+∞).