分析 (1)由三角形的中位線性質(zhì)得GH∥CD,然后由線面平行的判定定理得答案;
(2)由已知結(jié)合面面垂直的性質(zhì)得ED⊥AD,進(jìn)一步得到ED⊥平面ABCD,即有ED⊥BC.又BC⊥CD,則由線面垂直的判斷得答案;
(3)依題意:點(diǎn)G到平面ABCD的距離h等于點(diǎn)F到平面ABCD的一半,即棱錐A-BCG的高h(yuǎn)=$\frac{1}{2}$,然后代入棱錐的體積公式得答案.
解答 (1)證明:∵G、H分別是DF、FC的中點(diǎn),
∴△FCD中,GH∥CD,
∵CD?平面CDE,GH?平面CDE,
∴GH∥平面CDE;
(2)證明:∵平面ADEF⊥平面ABCD,交線為AD,
∴ED⊥AD,AD?平面ABCD,
∴ED⊥平面ABCD,
∵BC?平面ABCD,
∴ED⊥BC.
又BC⊥CD,CD、DE相交于D點(diǎn),
∴BC⊥平面CDE;
(3)解:依題意:點(diǎn)G到平面ABCD的距離h等于點(diǎn)F到平面ABCD的一半,
即:h=$\frac{1}{2}$.
∴${V_{A-BCG}}={V_{GABC}}=\frac{1}{3}×\frac{1}{2}×1×1×\frac{1}{2}=\frac{1}{12}$.
點(diǎn)評 本小題主要考查空間線面關(guān)系、幾何體的體積等知識,考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及空間想象能力、推理論證能力和運(yùn)算求解能力,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com