18.已知函數(shù)f(x)=ax3+bx2+cx+1(a<0)的導(dǎo)數(shù)f′(x)滿足下列條件:當(dāng)1<x<4時,f′(x)>0;當(dāng)x>4或x<1時,f′(x)<0;當(dāng)x=4或x=1時,f′(x)=0.
(1)試畫出函數(shù)f(x)的圖象;
(2)若f(x)的圖象與x軸有兩個交點,求a的值.

分析 (1)先求出函數(shù)的單調(diào)區(qū)間,從而畫出函數(shù)的大致圖象;(2)由題意得到方程組,解出a的值即可.

解答 解:(1)由題意得:f(x)在(-∞,1)遞減,在(1,4)遞增,在(4,+∞)遞減,
且f(0)=1,
畫出函數(shù)f(x)的大致圖象,如圖示:
;
(2)由f(x)的圖象與x軸有兩個交點,
得:f′(1)=0,f(1)=0,f′(4)=0,
即$\left\{\begin{array}{l}{a+b+c+1=0}\\{3a+2b+c=0}\\{48a+8b+c=0}\end{array}\right.$,解得:a=-$\frac{3}{17}$.

點評 本題考查了函數(shù)的單調(diào)性,考查導(dǎo)數(shù)的應(yīng)用,考查函數(shù)的極值問題,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,正方形ABCD的邊長為1,正方形ADEF所在平面與平面ABCD互相垂直,G,H是DF,F(xiàn)C的中點.
(1)求證:GH∥平面CDE;
(2)求證:BC⊥平面CDE;
(3)求三棱錐A-BCG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.計算:sin50°+$\sqrt{3}$tan10°cos40°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.若在區(qū)間(a,b)上任意x滿足f(x)>0,f′(x)>0,f″(x)>0,其中f′(x)為f(x)的導(dǎo)數(shù),f″(x)是f′(x)的導(dǎo)數(shù),則稱f(x)是區(qū)間(a,b)上的“δ”函數(shù).已知函數(shù)φ(x)=$\frac{m}{3}$x3-$\frac{1}{2}$x2-x+ex是區(qū)間(0,+∞)上的“δ”函數(shù).
(1)實數(shù)m的取值范圍是m>-$\frac{1}{2}$;
(2)若g(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2-x+ex,記S1=${∫}_{a}^$g(x)dx,S2=$\frac{g(a)+g(b)}{2}$•(b-a),S3=g(a)(b-a),其中b>a>0,則S1,S2,S3中最大的為s2>s1>s3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.解下列線性規(guī)劃問題
(1)設(shè)z=3x+4y,式中的變量x,y滿足:$\left\{\begin{array}{l}{x+y≤3\\}\\{y≤2x}\\{x,y≥0}\end{array}\right.$,求z的最大值zmax
(2)設(shè)z=x+y,式中的變量x,y滿足$\left\{\begin{array}{l}{x+2y≥2\\}\\{5x+2y≥6}\\{x,y≥0}\end{array}\right.$,求z的最小值zmin

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知|$\overrightarrow{a}$|=4,|$\overrightarrow$|=3,(2$\overrightarrow{a}$-3$\overrightarrow$)(2$\overrightarrow{a}$+$\overrightarrow$)=61,在△ABC中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{CA}$=$\overrightarrow$,求△ABC的內(nèi)角A的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若函數(shù)y=$\frac{1}{2}$sin2x+acosx在區(qū)間(0,π)上是增函數(shù),則實數(shù)a的取值范圍是a<-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在空間中,下列結(jié)論正確的是( 。
A.平行于同一直線的兩直線平行B.垂直于同一直線的兩直線平行
C.平行于同一平面的兩直線平行D.垂直于同一平面的兩直線垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,AB是圓O的直徑,C是半徑OB的中點,D是OB延長線上一點,且BD=OB,直線MD與圓O相交于點M,T(不與A,B重合),連結(jié)MC,MB,OT.
(Ⅰ)求證:MTCO四點共圓;
(Ⅱ)求證:MD=2MC.

查看答案和解析>>

同步練習(xí)冊答案