3.已知正項(xiàng)等比數(shù)列{an},且a1a5+2a3a5+a3a7=25,則a3+a5=5.

分析 由題意可得 a32+2a3a5+a52=25,即(a3+a52=25,可得a3+a5 =5.

解答 解:在正項(xiàng)等比數(shù)列{an} 中,a1a5+2a3a5+a3a7=25,即a32+2a3a5+a52=25,
∴(a3+a52=25,
故a3+a5 =5,
故答案為:5

點(diǎn)評 本題考查等比數(shù)列的定義和性質(zhì),得到 a32+2a3a5+a52=25,是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知半徑為1的扇形面積為$\frac{π}{3}$,則此扇形的周長為$\frac{2π}{3}$+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知向量$\overrightarrow{a}$=(2cosx,$\sqrt{3}$sinx),$\overrightarrow$=(3cosx,-2cosx),設(shè)函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$
(1)求f(x)的最小正周期;
(2)若x∈[0,$\frac{π}{2}$],求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在△ABC中,若sin2B+$\sqrt{2}sinBsinC={sin^2}A-{sin^2}$C,則A的值為$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知直線l過定點(diǎn)(1,0),且傾斜角為$\frac{π}{3}$,則直線l的一般式方程為$\sqrt{3}$x-y-$\sqrt{3}$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,OA、OB是兩條公路(近似看成兩條直線),$∠AOB=\frac{π}{3}$,在∠AOB內(nèi)有一紀(jì)念塔P(大小忽略不計(jì)),已知P到直線OA、OB的距離分別為PD、PE,PD=6千米,PE=12千米.現(xiàn)經(jīng)過紀(jì)念塔P修建一條直線型小路,與兩條公路OA、OB分別交于點(diǎn)M、N.
(1)求紀(jì)念塔P到兩條公路交點(diǎn)O處的距離;
(2)若紀(jì)念塔P為小路MN的中點(diǎn),求小路MN的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.每次試驗(yàn)的成功率為p(0<p<1),重復(fù)進(jìn)行10次試驗(yàn),其中前6次都未成功,后4次都成功的概率為(1-p)6•p4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若關(guān)于x的不等式x2+mx<0的解集為{x|0<x<2},則實(shí)數(shù)m的值為( 。
A.-2B.-1C.0D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}x+y≤4\\ y≥x\\ x≥1\end{array}\right.$,若目標(biāo)函數(shù)z=ax+y的最小值為-2,則a=-2.

查看答案和解析>>

同步練習(xí)冊答案