【題目】如圖,已知, 分別為橢圓: 的上、下焦點, 是拋物線: 的焦點,點是與在第二象限的交點,且.
(1)求橢圓的方程;
(2)與圓相切的直線: (其中)交橢圓于點, ,若橢圓上一點滿足,求實數(shù)的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,平面,在直角梯形中,,,, 為線段 的中點
(1)求證:平面平面
(2)在線段 上是否存在點 ,使得平面 ?若存在,求出點 的位置;若不存在,請說明理由
(3)若 是中點,,,,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】二項式的二項式系數(shù)和為256.
(1)求展開式中二項式系數(shù)最大的項;
(2)求展開式中各項的系數(shù)和;
(3)展開式中是否有有理項,若有,求系數(shù);若沒有,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐中,底面為平行四邊形, 底面, 是棱的中點,
且.
(1)求證: 平面;
(2)如果是棱上一點,且直線與平面所成角的正弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l經過點A(﹣1,0),其傾斜角是α,以原點O為極點,以x軸的非負半軸為極軸,與直角坐標系xOy取相同的長度單位,建立極坐標系.設曲線C的極坐標方程是ρ2=6ρcosθ﹣5.
(Ⅰ)若直線l和曲線C有公共點,求傾斜角α的取值范圍;
(Ⅱ)設B(x,y)為曲線C任意一點,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某百貨公司1~6月份的銷售量與利潤的統(tǒng)計數(shù)據(jù)如下表:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
銷售量x(萬件) | 10 | 11 | 13 | 12 | 8 | 6 |
利潤y(萬元) | 22 | 25 | 29 | 26 | 16 | 12 |
附:
(1)根據(jù)2~5月份的統(tǒng)計數(shù)據(jù),求出關于的回歸直線方程
(2)若由回歸直線方程得到的估計數(shù)據(jù)與剩下的檢驗數(shù)據(jù)的誤差均不超過萬元,則認為得到的回歸直線方程是理想的,試問所得回歸直線方程是否理想?(參考公式:,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,側面PAB⊥底面ABCD,且∠PAB=∠ABC=90°,AD∥BC,PA=AB=BC=2AD,E是PC的中點.
(Ⅰ)求證:DE⊥平面PBC;
(Ⅱ)求二面角A﹣PD﹣E的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)有如下性質:如果常數(shù),那么該函數(shù)在上是減函數(shù),在上是增函數(shù).
(1)已知,,,利用上述性質,求函數(shù)的單調區(qū)間和值域.
(2)對于(1)中的函數(shù)和函數(shù),若對于任意的,總存在,使得成立,求實數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com