分析 (1)運用正弦定理和同角的商數(shù)關(guān)系,即可得到角A,再由三角形的面積公式,計算即可得到;
(2)運用向量的數(shù)量積的定義和向量的平方即為模的平方,由余弦定理和基本不等式,即可得到最小值.
解答 解:(1)由正弦定理,可得
$\frac{sinC}{sinC}$=$\frac{sinA}{\sqrt{3}cosA}$=1,
即有tanA=$\sqrt{3}$,
由0<A<π,可得A=$\frac{π}{3}$,
由正弦定理可得4c=bc2,即有bc=4,
△ABC的面積為S=$\frac{1}{2}$bcsinA=$\frac{1}{2}$×4×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$;
(2)$\overrightarrow{AB}$$•\overrightarrow{BC}$+$\overrightarrow{A{B}^{2}}$=4,
可得c2-accosB=4,
由余弦定理,可得2c2-(a2+c2-b2)=8,
即b2+c2-a2=8,
又a2=b2+c2-2bccosA=b2+c2-bc,
即有bc=8,
由a2=b2+c2-bc≥2bc-bc=bc=8,
當且僅當b=c時,a取得最小值,且為2$\sqrt{2}$.
點評 本題考查正弦定理和余弦定理及面積公式的運用,考查向量的數(shù)量積的定義和性質(zhì),以及基本不等式的運用:求最值,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2x+5}$ | B. | $\frac{2}{2x+5}$ | C. | $\frac{5}{2x+5}$ | D. | $\frac{ln2}{2x+5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 假設(shè)直線l∥平面α | B. | 假設(shè)直線l∩平面α于點A | ||
C. | 假設(shè)直線l?平面α | D. | 假設(shè)直線l⊥平面α |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
分組 | 頻數(shù) | 頻率 |
[10,15) | 10 | 0.25 |
[15,20) | 24 | n |
[20,25) | m | p |
[25,30) | 2 | 0.05 |
合計 | M | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com