【題目】若(x+ )n的展開式中各項(xiàng)的系數(shù)之和為81,且常數(shù)項(xiàng)為a,則直線y= x與曲線y=x2所圍成的封閉區(qū)域面積為 .
【答案】
【解析】解:∵(x+ )n的展開式中各項(xiàng)的系數(shù)之和為81,
∴令x=1,可得3n=81,
解得n=4,
(x+ )4的展開式的通項(xiàng)公式為:Tr+1=C4r2rx4﹣2r,
令4﹣2r=0,解得r=2,
∴展開式中常數(shù)項(xiàng)為a=C4222=24;
∴直線y=4x與曲線y=x2所圍成的封閉區(qū)域面積為:S=(4x﹣x2)dx=(2x2﹣ x3) = .
所以答案是: .
【考點(diǎn)精析】通過靈活運(yùn)用定積分的概念,掌握定積分的值是一個(gè)常數(shù),可正、可負(fù)、可為零;用定義求定積分的四個(gè)基本步驟:①分割;②近似代替;③求和;④取極限即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過曲線C1: ﹣ =1(a>0,b>0)的左焦點(diǎn)F1作曲線C2:x2+y2=a2的切線,設(shè)切點(diǎn)為M,延長F1M交曲線C3:y2=2px(p>0)于點(diǎn)N,其中曲線C1與C3有一個(gè)共同的焦點(diǎn),若|MF1|=|MN|,則曲線C1的離心率為( )
A.
B. ﹣1
C. +1
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xoy中圓C的參數(shù)方程為 (α為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為 .
(1)求圓C的直角坐標(biāo)方程及其圓心C的直角坐標(biāo);
(2)設(shè)直線l與曲線C交于A,B兩點(diǎn),求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若集合A={1,2,3},B={(x,y)|x+y﹣4>0,x,y∈A},則集合B中的元素個(gè)數(shù)為( )
A.9
B.6
C.4
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓的一個(gè)焦點(diǎn)為( ,0),(1, )是橢圓上的一個(gè)點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的上、下頂點(diǎn)分別為A,B,P(x0 , y0)(x0≠0)是橢圓上異于A,B的任意一點(diǎn),PQ⊥y軸,Q為垂足,M為線段PQ中點(diǎn),直線AM交直線l:y=﹣1于點(diǎn)C,N為線段BC的中點(diǎn),如果△MON的面積為 ,求y0的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=aex﹣xlnx,其中a∈R,e是自然對數(shù)的底數(shù).
(Ⅰ)若f(x)是(0,+∞)上的增函數(shù),求a的取值范圍;
(Ⅱ)若 ,證明:f(x)>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在(﹣1,+∞)上的單調(diào)函數(shù)f(x),對于任意的x∈(﹣1,+∞),f[f(x)﹣xex]=0恒成立,則方程f(x)﹣f′(x)=x的解所在的區(qū)間是( )
A.(﹣1,﹣ )
B.(0, )
C.(﹣ ,0)
D.( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若f(x)=sin(2x+φ)+b,對任意實(shí)數(shù)x都有f(x+ )=f(﹣x),f( )=﹣1,則實(shí)數(shù)b的值為( )
A.﹣2或0
B.0或1
C.±1
D.±2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,給定兩個(gè)平面單位向量 和 ,它們的夾角為120°,點(diǎn)C在以O(shè)為圓心的圓弧AB上,且 (其中x,y∈R),則滿足x+y≥ 的概率為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com