14.如圖,點C是圓O的直徑BE的延長線上一點,AC是圓O的切線,A是切點,∠ACB的平分線CD與AB相交于點D,與AE相交于點F.
(1)求∠ADF的值;
(2)若AB=AC,求$\frac{AC}{BC}$的值.

分析 (1)利用切線的性質(zhì)和角平分線的性質(zhì)可得∠ADF=∠AFD.再利用BE是⊙O直徑,可得∠BAE=90°.即可得到∠ADF=45°.
(2)利用等邊對等角∠B=∠ACB=∠EAC.由(I)得∠BAE=90°,∠B+∠AEB=∠B+∠ACE+∠EAC=3∠B=90°,即可得到∠B=30°.進而得到△ACE∽△BCA,于是$\frac{AC}{BC}=\frac{AE}{AB}$=tan30°.

解答 解:(1)∵AC是⊙O的切線,∴∠B=∠EAC.
又∵DC是∠ACB的平分線,∴∠ACD=∠DCB,
∴∠B+∠DCB=∠EAC+∠ACD,∴∠ADF=∠AFD.
∵BE是⊙O直徑,∴∠BAE=90°.
∴∠ADF=45°.
(2)∵AB=AC,∴∠B=∠ACB=∠EAC.
由(1)得∠BAE=90°,∴∠B+∠AEB=∠B+∠ACE+∠EAC=3∠B=90°,
∴∠B=30°.
∵∠B=∠EAC,∠ACB=∠ACB,
∴△ACE∽△BCA,
∴$\frac{AC}{BC}=\frac{AE}{AB}$=tan30°=$\frac{\sqrt{3}}{3}$.

點評 熟練掌握圓的性質(zhì)、切線的性質(zhì)和角平分線的性質(zhì)、弦切角定理、相似三角形的性質(zhì)等是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.將棱長為1的正方體截去若干個角后,得到某幾何體的三視圖,如圖所示,它們都是邊長為1的正方形,則該幾何體的體積為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若定義域為D的函數(shù)f(x)滿足:
①f(x)在D內(nèi)是單調(diào)函數(shù);
②存在[a,b]⊆D,使得f(x)在[a,b]上的值域為[$\frac{a}{2}$,$\frac{2}$],則稱函數(shù)f(x)為“半值函數(shù)”.
已知函h(x)=logc(cx+t)(c>0,c≠1)是“半值函數(shù)”則實數(shù)t的取值范圍為( 。
A.(0,+∞)B.(-∞,$\frac{1}{4}$)C.($\frac{1}{4}$,+∞)D.(0,$\frac{1}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,角A,B,C的對邊分別為a,b,c,向量$\overrightarrow m}$=(4b,$\sqrt{7}$),$\overrightarrow n}$=(a,sinA)滿足$\overrightarrow m}$∥$\overrightarrow n}$.
(Ⅰ)求sinB的值;
(Ⅱ)若a,b,c成等差數(shù)列,且公差大于0,求cosA-cosC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在直角三角形ABC中,∠C=$\frac{π}{2}$,AB=2,AC=1,若$\overrightarrow{AD}$=$\frac{3}{2}$$\overrightarrow{AB}$,則$\overrightarrow{CD}$•$\overrightarrow{CB}$=$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)直線x-3y+m=0(m≠0)與雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩條漸近線分別交于點A,B,若點P(m,0)滿足|PA|=|PB|,則該雙曲線的離心率是( 。
A.$\frac{\sqrt{5}}{2}$B.$\frac{3}{2}$C.$\frac{5}{2}$D.$\sqrt{5}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.一簡單多面體的三視圖如圖所示,則該簡單多面體的體積為( 。
A.$\frac{2}{3}$B.$\frac{{3+\sqrt{2}}}{6}$C.$\frac{{5+\sqrt{2}}}{6}$D.$\frac{7}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若如圖為某直三棱柱(側(cè)棱與底面垂直)被削去一部分后的直觀圖與三視圖中的側(cè)視圖、俯視圖,則其正視圖的面積為4,三棱錐D-BCE的體積為$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(Ⅰ)以直角坐標(biāo)系的原點為極點,x軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的長度單位已知直線的極坐標(biāo)方程為θ=$\frac{π}{4}$(ρ∈R),它與曲線$\left\{\begin{array}{l}{x=2+\sqrt{5cos}θ}\\{y=1+\sqrt{5sin}θ}\end{array}\right.$(θ為參數(shù))相交于兩點A和B,求|AB|;
(Ⅱ)已知極點與原點重合,極軸與x軸正半軸重合,若直線C1的極坐標(biāo)方程為:ρcos(θ-$\frac{π}{4}$),曲線C2的參數(shù)方程為:$\left\{\begin{array}{l}{x=1+cosθ}\\{y=3+sinθ}\end{array}\right.$(θ為參數(shù)),試求曲線C2關(guān)于直線C1對稱的曲線的直角坐標(biāo)方程.

查看答案和解析>>

同步練習(xí)冊答案