4.將棱長(zhǎng)為1的正方體截去若干個(gè)角后,得到某幾何體的三視圖,如圖所示,它們都是邊長(zhǎng)為1的正方形,則該幾何體的體積為(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{5}{6}$

分析 由已知中的三視圖可得:該幾何體是棱長(zhǎng)為1的正方體截去兩個(gè)角所得的組合體,畫出其直觀圖,并求出截去部分的體積,相減可得答案.

解答 解:由已知中的三視圖可得:該幾何體是棱長(zhǎng)為1的正方體截去兩個(gè)角所得的組合體,
其直觀圖如下圖所示:

故組合體的體積V=1-2($\frac{1}{3}$×$\frac{1}{2}$×1×1×1)=$\frac{2}{3}$,
故選:C

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是由三視圖求體積和表面積,解決本題的關(guān)鍵是得到該幾何體的形狀.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AD∥BC,∠DAB=90°,PA=AB=BC=3,AD=1.
(Ⅰ)求證:BC⊥平面PAB;
(Ⅱ)求PC與平面PAB所成角的正切值;
(Ⅲ)設(shè)點(diǎn)E在線段PC上,若$\frac{PE}{EC}$=$\frac{1}{2}$,求證:DE∥平面PAB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)函數(shù)f(x)=$\frac{k}{2}{x^2}$-2x+klnx,k>0.
(1)當(dāng)0<k<1時(shí),求函數(shù)f(x)在$[\frac{1}{2},2]$上的極值點(diǎn);
(2)當(dāng)k=2時(shí),設(shè)[a,b]⊆[1,2].證明:存在唯一的ξ∈(a,b),使得f′(ξ)=$\frac{f(b)-f(a)}{b-a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知圓x2+y2+x+2y=$\frac{61}{16}$和圓(x-sinα)2+(y-1)2=$\frac{1}{16}$,其中0°≤α≤90°,則兩圓的位置關(guān)系是( 。
A.相交B.外切C.內(nèi)切D.相交或內(nèi)切

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)全集U={1,2,3,4,5,6,7},P={1,2,3,4},Q={3,4,5,6},則P∩(∁UQ)=( 。
A.{1,2,3,4,5,6}B.{1,2,3,4,5}C.{1,2,5}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某市教育局邀請(qǐng)教育專家深入該市多所中小學(xué),開(kāi)展聽(tīng)課,訪談及隨堂檢測(cè)等活動(dòng).他們把收集到的180節(jié)課分為三類課堂教學(xué)模式:教師主講的為A模式,少數(shù)學(xué)生參與的為B模式,多數(shù)學(xué)生參與的為C模式,A、B、C三類課的節(jié)數(shù)比例為3:2:1.
(Ⅰ)為便于研究分析,教育專家將A模式稱為傳統(tǒng)課堂模式,B、C統(tǒng)稱為新課堂模式.根據(jù)隨堂檢測(cè)結(jié)果,把課堂教學(xué)效率分為高效和非高效,根據(jù)檢測(cè)結(jié)果統(tǒng)計(jì)得到如下2×2列聯(lián)表(單位:節(jié))
高效非高效總計(jì)
新課堂模式603090
傳統(tǒng)課堂模式405090
總計(jì)10080180
請(qǐng)根據(jù)統(tǒng)計(jì)數(shù)據(jù)回答:有沒(méi)有99%的把握認(rèn)為課堂教學(xué)效率與教學(xué)模式有關(guān)?并說(shuō)明理由.
(Ⅱ)教育專家用分層抽樣的方法從收集到的180節(jié)課中選出12節(jié)課作為樣本進(jìn)行研究,并從樣本中的B模式和C模式課堂中隨機(jī)抽取2節(jié)課,求至少有一節(jié)課為C模式課堂的概率.
參考臨界值表:
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828
參考公式:K2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$
其中n =a +b +c +d).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知全集U=[0,2],集合M={x|x2-x≤0},則∁uM=(1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知集合M={x|y=lg(1-x)},集合N={y|y=2x,x∈R},則M∩N=( 。
A.{x|x<1}B.{x|x>1}C.{x|0<x<1}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,點(diǎn)C是圓O的直徑BE的延長(zhǎng)線上一點(diǎn),AC是圓O的切線,A是切點(diǎn),∠ACB的平分線CD與AB相交于點(diǎn)D,與AE相交于點(diǎn)F.
(1)求∠ADF的值;
(2)若AB=AC,求$\frac{AC}{BC}$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案