17.若函數(shù)f(x)對定義域內(nèi)的任意x1,x2,當f(x1)=f(x2)時,總有x1=x2,則稱函數(shù)f(x)為單純函數(shù),例如函數(shù)f(x)=x是單純函數(shù),但函數(shù)f(x)=x2不是單純函數(shù),下列命題:
①函數(shù)$f(x)=\left\{\begin{array}{l}{log_2}x,x≥2\\ x-1,x<2\end{array}\right.$是單純函數(shù);
②當a>-2時,函數(shù)$f(x)=\frac{{{x^2}+ax+1}}{x}$在(0,+∞)上是單純函數(shù);
③若函數(shù)f(x)為其定義域內(nèi)的單純函數(shù),x1≠x2,則f(x1)≠f(x2);
④若函f(x)數(shù)是單純函數(shù)且在其定義域內(nèi)可導,則在其定義域內(nèi)一定存在x0使其導數(shù)f'(x0)=0.
其中正確的命題為①③.(填上所有正確的命題序號)

分析 利用單純函數(shù)的定義,進行判斷,即可得出結論.

解答 解:由單純函數(shù)的定義可知單純函數(shù)f(x)的自變量和函數(shù)值是一一映射,
因此單調函數(shù)一定是單純函數(shù),但單純函數(shù)不一定是單調函數(shù),①③正確;
當a=0時$f(x)=x+\frac{1}{x}$在(0,+∞)不是單純函數(shù),②錯誤;
函數(shù)f(x)=x是單純函數(shù),但其定義域內(nèi)不存在x0使其導函數(shù)f'(x0)=0,④錯誤.
故答案為①③.

點評 本題考查新定義,函數(shù)的性質及應用,簡易邏輯,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率e=$\frac{1}{2}$,右焦點到右頂點的距離為1.
(1)求橢圓C的方程;
(2)A,B兩點為橢圓C的左右頂點,P為橢圓上異于A,B的一點,記直線PA,PB斜率分別為KPA,KPB,求KPA•KPB的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知正實數(shù)x,y滿足2x+y=2,則$\frac{2}{x}$+$\frac{1}{y}$的最小值為$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知數(shù)列{an}為等差數(shù)列,其中a2+a3=8,a5=3a2
(1)求數(shù)列{an}的通項公式;
(2)記${b_n}=\frac{2}{{{a_n}{a_{n+1}}}}$,設{bn}的前n項和為Sn.求最小的正整數(shù)n,使得${S_n}>\frac{2016}{2017}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{sin\frac{πx}{6},0≤x≤2}\\{2f(x-2),x>2}\end{array}\right.$,則f(2017)等于( 。
A.0B.$\frac{1}{2}$C.21007D.21008

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}sin({x+α}),({x≤0})\\ cos({x-β}),({x>0})\end{array}$是偶函數(shù),則下列結論可能成立的是( 。
A.$α=\frac{π}{4},β=\frac{π}{8}$B.$α=\frac{2π}{3},β=\frac{π}{6}$C.$α=\frac{π}{3},β=\frac{π}{6}$D.$α=\frac{5π}{6},β=\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若x,y滿足約束條件$\left\{\begin{array}{l}x-y+1≤0\\ x-2y≤0\\ x+2y-2≤0\end{array}\right.$,則z=x+y的最大值為( 。
A.-3B.$\frac{1}{2}$C.1D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.小趙、小錢、小孫、小李到 4 個景點旅游,每人只去一個景點,設事件 A=“4 個人去的景點不相同”,事件B=“小趙獨自去一個景點”,則P( A|B)=( 。
A.$\frac{2}{9}$B.$\frac{1}{3}$C.$\frac{4}{9}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)$f(x)=\left\{\begin{array}{l}{log_5}({1-x})({x<1})\\-{({x-2})^2}+2({x≥1})\end{array}\right.$,則關于x的方程$f({x+\frac{1}{x}-2})=a$,當1<a<2時實根個數(shù)為( 。
A.5個B.6個C.7個D.8個

查看答案和解析>>

同步練習冊答案