分析 運(yùn)用向量的加減運(yùn)算的性質(zhì):向量的模的定義,討論P(yáng)位于切點(diǎn)E和頂點(diǎn)時(shí)分別取得最值,即可得到所求取值范圍.
解答 解:由題意M,N是直徑的兩端點(diǎn),可得$\overrightarrow{OM}$+$\overrightarrow{ON}$=$\overrightarrow{0}$,$\overrightarrow{OM}$•$\overrightarrow{ON}$=-1,
∴|$\overrightarrow{PM}$+$\overrightarrow{PN}$|=|$\overrightarrow{PO}$+$\overrightarrow{OM}$+$\overrightarrow{PO}$+$\overrightarrow{ON}$|=2|$\overrightarrow{PO|}$,
即求正四面體表面上的動(dòng)點(diǎn)P到O的距離的范圍.
當(dāng)P位于E(切點(diǎn))時(shí),OP取得最小值1;
當(dāng)P位于A處時(shí),OP即為正四面體外接球半徑最大即為3.
設(shè)正四面體的邊長(zhǎng)為a,由O為正四面體的中心,
可得直角三角形ABE中,AE=$\frac{\sqrt{6}}{3}$a,BE=$\frac{\sqrt{3}}{3}$a,OE=$\frac{\sqrt{6}}{12}$a,AO=$\frac{\sqrt{6}}{4}$a,
綜上可得|$\overrightarrow{PO}$|的最小值為1,最大值為3,
則|$\overrightarrow{PM}$+$\overrightarrow{PN}$|的取值范圍是[2,6].
故答案為:[2,6].
點(diǎn)評(píng) 本題考查向量在幾何中的運(yùn)用,考查向量的加減運(yùn)算的性質(zhì),考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{{P_1}+{P_2}}}{2}$ | B. | $\sqrt{{P_1}{P_2}}$ | C. | $\frac{{{P_1}{P_2}}}{2}$ | D. | $\sqrt{(1+{P_1})(1+{P_2})}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,4] | B. | (-∞,2] | C. | (-∞,2-ln2] | D. | (-∞,4-ln2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [1,+∞) | B. | (-∞,5) | C. | [1,5] | D. | [1,5) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 7 | B. | 20 | C. | 40 | D. | 73 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 120° | B. | 60° | C. | 150° | D. | 30° |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com