如圖,圓錐的側(cè)面展開圖恰好是一個半圓,則該圓錐的母線與底面所成的角的大小是
 

考點:直線與平面所成的角
專題:空間角
分析:設(shè)出圓錐的半徑與母線長,利用圓錐的底面周長等于側(cè)面展開圖的弧長得到圓錐的半徑與母線長,進而表示出圓錐的母線與底面所成角的余弦值,也就求出了夾角的度數(shù).
解答: 解:設(shè)圓錐的母線長為R,底面半徑為r,
則:πR=2πr,
∴R=2r,
∴母線與底面所成角的余弦值=
r
R
=
1
2

∴母線與底面所成角是60°.
故答案為:60°.
點評:本題用到的知識點為:圓錐的側(cè)面展開圖的弧長等于圓錐的底面周長;注意利用一個角相應(yīng)的三角函數(shù)值求得角的度數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-e-x,其中e是自然對數(shù)的底數(shù).
(1)證明:f(x)是R上的奇函數(shù);
(2)若函數(shù)g(x)=e2x+e-2x-6f(x),求g(x)在區(qū)間[0,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M(x1,y1)是雙曲線
x2
a2
-
y2
b2
=1右支上任意一點,則點M到雙曲線兩焦點F1、F2的距離分別為
 
(用x1,y1,a,b表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若θ為三角形中最大內(nèi)角,則直線l:xtanθ+y+m=0的傾斜角的范圍是(  )
A、(0,
π
2
)∪(
π
2
,
3
)
B、(
π
3
,
π
2
)∪(
π
2
,
3
)
C、(0,
π
3
)∪(
π
3
,π)
D、(0,
π
2
)∪(
3
,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=cos(
2
+
π
4
),則f(1)+f(2)+f(3)+…+f(2010)=(  )
A、
2
B、-
2
C、-
2
2
D、
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正方體ABCD-A1B1C1D1 中,其棱長為1,則列命題中正確命題的個數(shù)為( 。
(1)A1C1和AD1所成角為
π
3

(2)B1到截面A1C1D的距離為
2
3
3

(3)正方體的內(nèi)切球與外接球的半徑比為1:
2
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=plnx+(p-1)x2+1.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)p=1時,f(x)≤kx恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式|x+1|-|x-4|≥a+
4
a
,對任意的x∈R恒成立,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算
(1)(2
7
9
0.5+(0.1)-2+(2
10
27
 -
2
3
-3π0+
37
48

(2)2 log4(lg3-1)2+3 log81(lg
1
3
-2)4

查看答案和解析>>

同步練習(xí)冊答案