已知實數(shù)x,y滿足x≥1,y≥1,(logax)2+(logay)2=loga(ax2)+loga(ay2),當(dāng)a>1時,求loga(xy)的取值范圍.
【答案】
分析:先利用對數(shù)運算性質(zhì)將已知對數(shù)等式變形為關(guān)于log
ax,log
ay的等式,再利用換元法及均值定理將等式轉(zhuǎn)化為不等式,解不等式即可得所求范圍
解答:解:∵x≥1,y≥1,a>1,
∴(log
ax)
2+(log
ay)
2=log
a(ax
2)+log
a(ay
2)可變形為
(log
ax)
2+(log
ay)
2=log
aa+2log
ax+log
aa+2log
ay,
即(log
ax)
2+(log
ay)
2-2log
ax-2log
ay-2=0,
即(log
ax+log
ay)
2-2log
ax•log
ay-2(log
ax+log
ay)-2=0
設(shè)log
ax=m,log
ay=n,則m≥0,n≥0,且(m+n)
2-2mn-2(m+n)-2=0,
即(m-1)
2+(n-1)
2=4(m≥0,n≥0)
令k=m+n,則n=-m+k,結(jié)合判別式法與代點法得
1+
≤log
a(xy)≤2+2
所以1+
≤log
a(xy)≤2+2
點評:本題考查了對數(shù)運算性質(zhì),利用均值定理化等式為不等式求變量范圍的解題技巧,轉(zhuǎn)化化歸的思想方法