11.已知向量$\overrightarrow m$=(1,7)與向量$\overrightarrow n$=(tanα,18+tanα)平行,則tan2α的值為( 。
A.$-\frac{4}{3}$B.$\frac{4}{3}$C.$-\frac{3}{4}$D.$\frac{3}{4}$

分析 利用向量共線(xiàn)的充要條件列出方程,通過(guò)二倍角的正切函數(shù)求解即可.

解答 解:向量$\overrightarrow m$=(1,7)與向量$\overrightarrow n$=(tanα,18+tanα)平行,
可得:7tanα=18+tanα,可得tanα=3.
則tan2α=$\frac{2×3}{1-{3}^{2}}$=-$\frac{3}{4}$.
故選:C.

點(diǎn)評(píng) 本題考查三角函數(shù)化簡(jiǎn)求值,二倍角公式的應(yīng)用,向量共線(xiàn)的充要條件,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知橢圓C:$\frac{x^2}{9}$+$\frac{y^2}{16}$=1,點(diǎn)P與C的焦點(diǎn)不重合.若點(diǎn)P關(guān)于C的焦點(diǎn)的對(duì)稱(chēng)點(diǎn)分別為A和B,線(xiàn)段PQ的中點(diǎn)在C上,則|AQ|+|BQ|=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知橢圓以?huà)佄锞(xiàn)y2=4x的頂點(diǎn)為中心,以此拋物線(xiàn)的焦點(diǎn)為右焦點(diǎn),又橢圓的短軸長(zhǎng)為2,則此橢圓方程為$\frac{{x}^{2}}{2}+{y}^{2}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.求直線(xiàn)$\left\{\begin{array}{l}{x=2-\frac{1}{2}t}\\{y=-1+\frac{1}{2}t}\end{array}\right.$(t為參數(shù))被圓x2+y2=4截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.定義集合A-B={x|x∈A且x∉B},若集合A={1,3,4,5},B={2,3,4},則集合A-B的元素個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列命題中,真命題的個(gè)數(shù)為( 。
①回歸系數(shù)γ滿(mǎn)足:|γ|的值越大,x,y的線(xiàn)性相關(guān)程度越弱;|γ|的值越小,x,y的線(xiàn)性相關(guān)程度越強(qiáng);
②正態(tài)密度曲線(xiàn)中,σ越大,正態(tài)曲線(xiàn)越扁平;σ越小,正態(tài)曲線(xiàn)越尖陡;
③利用x2進(jìn)行獨(dú)立性檢驗(yàn),可以對(duì)推斷的正確性的概率作出估計(jì),樣本容量越大,這個(gè)估計(jì)越準(zhǔn)確.
④從獨(dú)立性檢驗(yàn)可知,有99%的把握認(rèn)為吸煙與患肺病有關(guān)系時(shí),我們說(shuō)某人吸煙,那么他有99%的可能患上肺病.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.下列說(shuō)法中正確的是(3)(4).
(1)y=$\sqrt{{x}^{2}}$與y=$\root{3}{{x}^{3}}$是相等的函數(shù).  
(2)奇函數(shù)的圖象一定過(guò)原點(diǎn).
(3)函數(shù)一定是映射,映射不一定是函數(shù).
(4)定義在R上的奇函數(shù)在(0,+∞)上有最大值M,則在(-∞,0)上一定有最小值-M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知雙曲線(xiàn)C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)F和A(0,b)的連線(xiàn)與C的一條漸近線(xiàn)相交于點(diǎn)P,且$\overrightarrow{PF}$=2$\overrightarrow{AP}$,則雙曲線(xiàn)C的離心率為( 。
A.3B.$\sqrt{3}$C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.(1)用輾轉(zhuǎn)相除法求204與85的最大公約數(shù),并用更相減損術(shù)驗(yàn)證;
(2)用秦九韶算法求多項(xiàng)式f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x,當(dāng)x=2時(shí)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案