9.已知f(α)=$\frac{sin(2π-α)cos(π+α)cos(\frac{π}{2}-α)cos(\frac{11π}{2}-α)}{sin(3π-α)cos(\frac{π}{2}+α)sin(\frac{9π}{2}+α)}$+cos(2π-α).
(1)化簡(jiǎn)f(α);
(2)若f(α)=$\frac{\sqrt{10}}{5}$,求$\frac{1}{sinα}$+$\frac{1}{cosα}$的值.

分析 (1)利用誘導(dǎo)公式即可化簡(jiǎn)求值得解.
(2)將已知等式兩邊平方,利用同角三角函數(shù)基本關(guān)系式可求sinαcosα的值,即可化簡(jiǎn)所求計(jì)算得解.

解答 解:(1)f(α)=$\frac{(-sinα)(-cosα)sinα(-sinα)}{sinα(-cosα)sinα}$+cosα=sinα+cosα.------------------(6分)
(2)∵f(α)=sinα+cosα=$\frac{\sqrt{10}}{5}$,
∴1+2sinαcosα=$\frac{2}{5}$,
∴sinαcosα=-$\frac{3}{10}$,----------------(10分)
∴$\frac{1}{sinα}$+$\frac{1}{cosα}$=$\frac{sinα+cosα}{sinα-cosα}$=-$\frac{2\sqrt{10}}{3}$.-------------------(12分)

點(diǎn)評(píng) 本題主要考查了誘導(dǎo)公式,同角三角函數(shù)基本關(guān)系式在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列函數(shù)中,滿足“f(x)在x∈(0,+∞)為增”的是( 。
A.f(x)=x2+4x+3B.f(x)=-3x+1C.f(x)=$\frac{2}{x}$D.f(x)=x2-4x+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.直線y=-$\frac{\sqrt{3}}{3}$x-1的傾斜角為( 。
A.150°B.120°C.60°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知F是拋物線y2=2px(p>0)的焦點(diǎn),過F的直線與拋物線交于A、B兩點(diǎn),AB中點(diǎn)為C,過C作拋物線的準(zhǔn)線的垂線交準(zhǔn)線于C1點(diǎn),若CC1中點(diǎn)M的坐標(biāo)為($\sqrt{2}$,4),則p=4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列函數(shù)中,在R上單調(diào)遞增的是(  )
A.y=-xB.y=log3xC.$y={x^{\frac{1}{3}}}$D.y=($\frac{1}{2}$)x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-2x-1,-1≤x<0}\\{-2x+1,0<x≤1}\end{array}\right.$,則f(f(-1))=-1,|f(x)|$<\frac{1}{2}$的解集為(-$\frac{3}{4}$,$\frac{1}{4}$)∪($\frac{1}{4}$,$\frac{3}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列關(guān)于零向量的說法不正確的是( 。
A.零向量是沒有方向的向量B.零向量的方向是任意的
C.零向量與任一向量共線D.零向量只能與零向量相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:${ρ^2}=\frac{12}{{2+{{cos}^2}θ}}$,直線l:$2ρcos(θ-\frac{π}{6})=\sqrt{3}$.
(1)寫出直線l的參數(shù)方程;
(2)設(shè)直線l與曲線C的兩個(gè)交點(diǎn)分別為A、B,求|AB|的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案