如圖,正方形ACDE與等腰直角△ACB所在的平面互相垂直,且AC=BC=2,∠ACB=90°,F(xiàn)、G分別是線段AE、BC的中點(diǎn).求AD與GF所成的角的余弦值.
考點(diǎn):異面直線及其所成的角
專題:空間角,空間向量及應(yīng)用
分析:根據(jù)題意,建立空間直角坐標(biāo)系,可得向量
AD
=(0,-2,2),
GF
=(-1,2,1),利用空間向量的夾角公式加以計(jì)算,即可得到異面直線AD與FG所成的角的余弦值.
解答: 解,分別以CB、CA、CD所在直線為x軸、y軸、z軸,建立空間直角坐標(biāo)系,…2分
可得A(0,2,0),D(0,0,2),G(1,0,0),F(xiàn)(0,2,1)…4分
AD
=(0,-2,2),
GF
=(-1,2,1)…6分
|
AD
|=2
2
…8分
|
GF
|=
6
…10分
AD
GF
=-2,COS
AD
,
GF
=
AD
GF
|
AD
||
GF
|
=-
3
6
…12分
點(diǎn)評(píng):本題給出正方形所在平面與直角三角形所在平面互相垂直,求面直線AD與FG所成的角的余弦值.著重考查了面面垂直的性質(zhì)和利用空間向量研究異面直線所成角大小等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx+
a+1
2
x2+1,
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)當(dāng)-1<a<0時(shí),不等式f(x)>1+
a
2
ln(-a)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|-1≤x≤a,a>1且a∈R},B={y|y=2x-1,x∈A},C={z|z=x2,x∈A},是否存在a的值,使C⊆B?若存在,求出a的取值范圍.若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在側(cè)棱與底面垂直的四棱柱ABCD-A1B1C1D1中,AB∥CD,AB⊥BC,且A1A=AB=BC=1,CD=2.
(1)求證:AB1⊥平面A1BC;
(2)在線段CD上是否存在點(diǎn)N,使得D1N∥平面A1BC?若存在,求出此時(shí)三棱錐N-AA1C的體積;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y,z∈R,且x+2y+3z+8=0.求證:(x-1)2+(y+2)2+(z-3)2≥14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD是邊長為2
2
的正方形,其他四個(gè)側(cè)面是側(cè)棱長為
5
的等腰三角形,過棱PD的中點(diǎn)E作截面EFGH,使截面EFGH∥平面PBC,且截面EFGH分別交四棱錐各棱F、G、H.
(Ⅰ)證明:EF∥平面ABCD;
(Ⅱ)求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1=
9
2
,其前n項(xiàng)和為Sn,等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,比為q,且S2+b3=21,S2-b3=q
(Ⅰ)求通項(xiàng)公式an與bn;
(Ⅱ)設(shè)數(shù)列{cn}滿足cn•Sn=1,求{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:an+2an-an+1=tn(t-1),a1=1,a2=t(t>1,t為常數(shù))
(1)求a3;
(2)求證:an+1>an≥1;
(3)求證:{an}滿足an+2-2tan+1+tan=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓C:
x2
4
+
y2
3
=1,直線l的方程為x=4,過右焦點(diǎn)F的直線l′與橢圓交于異于左頂點(diǎn)A的P,Q兩點(diǎn),直線AP,AQ交直線l分別于點(diǎn)M,N.
(Ⅰ)當(dāng)
AP
AQ
=
9
2
時(shí),求此時(shí)直線l′的方程;
(Ⅱ)試問M,N兩點(diǎn)的縱坐標(biāo)之積是否為定值?若是,求出該定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案