分析 如圖所示,設(shè)四棱錐側(cè)棱的長度為xcm.利用正方形的面積公式可得底面邊長=$\sqrt{24}$,利用等腰三角形的性質(zhì)、勾股定理可得側(cè)面斜高h(yuǎn)=$\sqrt{{x}^{2}-(\sqrt{6})^{2}}$,進(jìn)而得出.
解答 解:如圖所示,設(shè)四棱錐側(cè)棱的長度為xcm.
底面邊長=$\sqrt{24}$=2$\sqrt{6}$,
則側(cè)面斜高h(yuǎn)=$\sqrt{{x}^{2}-(\sqrt{6})^{2}}$=$\sqrt{{x}^{2}-6}$,
∴18=$\frac{1}{2}×2\sqrt{6}$×$\sqrt{{x}^{2}-6}$,
解得x=2$\sqrt{15}$cm.
故四棱錐側(cè)棱的長度為2$\sqrt{15}$cm.
點(diǎn)評 本題考查了正四棱錐的性質(zhì)、等腰三角形的性質(zhì)、勾股定理、正方形的性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com