16.已知數(shù)列{an}滿足a1+3a2+32a3+…+3n-1an=$\frac{n}{3}$,n∈N+
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)anbn=n,求數(shù)列{bn}的前n項(xiàng)和Sn

分析 (1)利用遞推關(guān)系即可得出.
(2)anbn=n,bn=n•3n.利用“錯(cuò)位相減法”與等比數(shù)列的求和公式即可得出.

解答 解:(1)∵數(shù)列{an}滿足a1+3a2+32a3+…+3n-1an=$\frac{n}{3}$,n∈N+
∴n=1時(shí),a1=$\frac{1}{3}$;n≥2時(shí),a1+3a2+32a3+…+3n-2•an-1=$\frac{n-1}{3}$.
可得3n-1an=$\frac{1}{3}$,∴an=$\frac{1}{{3}^{n}}$.n=1時(shí)也成立.
∴an=$\frac{1}{{3}^{n}}$.
(2)anbn=n,∴bn=n•3n
∴數(shù)列{bn}的前n項(xiàng)和Sn=3+2×32+3×33+…+n•3n,
3Sn=32+2×33+…+(n-1)•3n+n•3n+1,
∴-2Sn=3+32+…+3n-n•3n+1=$\frac{3({3}^{n}-1)}{3-1}$-n•3n+1
解得Sn=$\frac{(2n-1)•{3}^{n+1}+3}{4}$.

點(diǎn)評(píng) 本題考查了數(shù)列遞推關(guān)系、等比數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知直線l:2mx-y-8m-3=0和圓C:x2+y2-6x+12y+20=0,l被C截的弦長(zhǎng)最短時(shí),弦長(zhǎng)為2$\sqrt{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.奇函數(shù)f(x)定義域是(-1,0)∪(0,1),f($\frac{1}{3}$)=0,當(dāng)x>0時(shí),總有($\frac{1}{x}$-x)f′(x)ln(1-x2)>2f(x)成立,則不等式f(x)>0的解集為( 。
A.$\left\{{x\left|{-1<x<-\frac{1}{3}或\frac{1}{3}<x<1}\right.}\right\}$B.$\{x|-1<x<-\frac{1}{3}或0<x<\frac{1}{3}\}$
C.$\left\{{x\left|{-\frac{1}{3}<x<0或\frac{1}{3}<x<1}\right.}\right\}$D.$\left\{{x\left|{-\frac{1}{3}<x<0或0<x<\frac{1}{3}}\right.}\right\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.平行四邊形ABCD中,$\overrightarrow{AB}$=(1,2),$\overrightarrow{AD}$=(-1,4),則$\overrightarrow{AC}$=(  )
A.(-3,3)B.(2,-2)C.(-2,2)D.(0,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.某超市去年的銷售額為a萬(wàn)元,計(jì)劃在今后10年內(nèi)每年比上一年增長(zhǎng)10%,從今年起10年內(nèi)這家超市的總銷售額為(  )萬(wàn)元.
A.1.19aB.1.15aC.10a(1.110-1)D.11a(1.110-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在△ABC中,角A、B、C所對(duì)的邊分別是a,b,c,若b=$\sqrt{3}$,c=3,B=30°,則a=( 。
A.$\sqrt{3}$B.$12\sqrt{3}$C.$\sqrt{3}或2\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,若a1=1,an+1=3Sn(n≥1),則a2016=3×42014

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知△ABC中,a=2,∠A=60°,則△ABC的外接圓直徑為$\frac{{4\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知a>b,c>d,且c,d不為0,那么下列不等式一定成立的是(  )
A.ad>bcB.ac>bdC.a-c>b-dD.a+c>b+d

查看答案和解析>>

同步練習(xí)冊(cè)答案