分析 求出雙曲線的標(biāo)準(zhǔn)方程,利用方程組法求出交點(diǎn)坐標(biāo)進(jìn)行求解即可.
解答 解:雙曲線的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{\frac{1}{4}}-\frac{{y}^{2}}{\frac{1}{2}}=1$,則a2=$\frac{1}{4}$,b2=$\frac{1}{2}$,c2=$\frac{1}{4}$+$\frac{1}{2}$=$\frac{3}{4}$,
即c=$\frac{\sqrt{3}}{2}$,b=$\frac{\sqrt{2}}{2}$,則F($\frac{\sqrt{3}}{2}$,0),
則以O(shè)F為直徑的圓的方程為(x-$\frac{\sqrt{3}}{4}$)2+y2=$\frac{3}{16}$,
雙曲線的一條漸近線為y=$\sqrt{2}$x,代入(x-$\frac{\sqrt{3}}{4}$)2+y2=$\frac{3}{16}$,
得x=$\frac{\sqrt{3}}{6}$,y=$\frac{\sqrt{6}}{6}$,即P($\frac{\sqrt{3}}{6}$,$\frac{\sqrt{6}}{6}$),
則|PF|=$\sqrt{(\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{6})^{2}+(\frac{\sqrt{6}}{6})^{2}}$=$\sqrt{\frac{1}{3}+\frac{1}{6}}$=$\frac{\sqrt{2}}{2}$,
故答案為:$\frac{\sqrt{2}}{2}$.
點(diǎn)評(píng) 本題主要考查雙曲線性質(zhì)的應(yīng)用,利用方程思想求出雙曲線的標(biāo)準(zhǔn)方程以及交點(diǎn)坐標(biāo)是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{2\sqrt{3}}}{3}$ | B. | $\sqrt{5}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-3,+∞) | B. | (-∞,-$\frac{1}{3}$] | C. | [$\frac{1}{3}$,+∞) | D. | (-∞,$\frac{1}{3}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z) | B. | [kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$](k∈Z) | ||
C. | [kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z) | D. | [kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$](k∈Z) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=sin|x| | B. | y=sin2x | C. | y=-sinx+2 | D. | y=sinx+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{9}$ | B. | $\frac{2}{3}$ | C. | $\frac{2}{9}$ | D. | $\frac{4}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com