8.已知離散型隨機(jī)變量X的分布列如下:
X012
Px4x5x
由此可以得到期望E(X)=1.4,方差D(X)=0.44.

分析 由離散型隨機(jī)變量X的分布列的性質(zhì)求出x=0.1,由此能求出數(shù)學(xué)期望E(X),進(jìn)而能求出方差D(X).

解答 解:由離散型隨機(jī)變量X的分布列,知:
x+4x+5x=1,解得x=0.1,
∴E(X)=0×0.1+1×0.4+2×0.5=1.4,
D(X)=(0-1.4)2×0.1+(1-1.4)2×0.4+(2-1.4)2×0.5=0.44.
故答案為:1.4,0.44.

點(diǎn)評 本題考查離散型隨機(jī)變量的分布列的性質(zhì)、數(shù)學(xué)期望、方差的求法,考查離散型隨機(jī)變量的分布列等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.從一批含有11只正品,2只次品的產(chǎn)品中,不放回地抽取3次,每次抽取1只,設(shè)抽得次品數(shù)為X,則E(5X+1)的值為( 。
A.$\frac{43}{13}$B.$\frac{42}{13}$C.$\frac{12}{13}$D.$\frac{6}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知直線y=k(x-2)(k>0)與拋物線C:y2=8x相交于A、B兩點(diǎn),若|AB|=9,則k=( 。
A.$\frac{{\sqrt{2}}}{3}$B.$\frac{{\sqrt{10}}}{10}$C.$\frac{{\sqrt{2}}}{4}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某校從高中1200名學(xué)生中抽取50名學(xué)生進(jìn)行問卷調(diào)查,如果采用系統(tǒng)抽樣的方法,將這1200名學(xué)生從1開始進(jìn)行編號,已知被抽取到的號碼有15,則下列號碼中被抽取到的還有( 。
A.255B.125C.75D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}2x-y-2≤0\\ x-2y+2≥0\\ x≥0\\ y≥0\end{array}\right.$,則z=x+y的最大值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)$f(x)=\frac{a}{x}+lnx-1,a∈R$.
(1)若曲線y=f(x)在P(1,f(1))處的切線平行于直線y=-x+1,求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)若a>0,且對任意x∈(0,2e]時,f(x)>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)y=f(x)在(0,+∞)上可導(dǎo),且滿足(x-1)[2f(x)+xf′(x)]>0(x≠1)恒成立,f(1)=2,若曲線f(x)在點(diǎn)(1,2)處的切線為y=g(x)且g(a)=2016,則a=-502.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知向量$\overrightarrow a$與$\overrightarrow b$的夾角為120°,且$|\overrightarrow a|=3,|\overrightarrow a-\overrightarrow b|=\sqrt{19}$,則$|\overrightarrow b|$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的非負(fù)半軸重合.曲線${C_1}:\left\{\begin{array}{l}x=1+\sqrt{2}t\\ y=-\sqrt{2}t\end{array}\right.$(t為參數(shù)),曲線C2的極坐標(biāo)方程為ρ=ρcos2θ+8cosθ.
(Ⅰ)將曲線C1,C2分別化為普通方程、直角坐標(biāo)方程,并說明表示什么曲線;
(Ⅱ)設(shè)F(1,0),曲線C1與曲線C2相交于不同的兩點(diǎn)A,B,求|AF|+|BF|的值.

查看答案和解析>>

同步練習(xí)冊答案