分析 根據(jù)題意利用垂直關(guān)系得出SB與平面SAC所成角為∠BSC,可判△ABC,△SAB,△SAC,△SBC都為直角三角形,轉(zhuǎn)化為直角三角形求解.
解答 解:∵SA⊥底面ABC,BC?面ABC
∴SA⊥BC,
∵AC⊥BC,SA∩AC=A,
∴BC⊥面SAC,
∴SB與平面SAC所成角為∠BSC,
∴△ABC,△SAB,△SAC,△SBC都為直角三角形
∵AC=BC=1,SA=AB,
∴AB=SA=$\sqrt{2}$,SB=2,
在Rt△SBC中,BC=1,SC=$\sqrt{3}$,SB=2,
∴sin∠BSC=$\frac{1}{2}$,
∴∠BSC=30°
故答案為:30°.
點(diǎn)評 本小題主要考查直線與平面所成角,以及二面角等基礎(chǔ)知識,考查空間想象能力,運(yùn)算能力和推理論證能力
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 點(diǎn)H是△A1BD的垂心 | B. | 直線AH與CD1的成角為900 | ||
C. | AH的延長線經(jīng)過點(diǎn)C1 | D. | 直線AH與BB1的成角為450 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com