【題目】如圖,四棱錐中,底面為平行四邊形,其中,,,等邊所在平面與平面垂直.

(Ⅰ)點(diǎn)在棱上,且,的重心,求證:平面;

)求三棱錐的體積.

【答案】見解析

【解析】(如圖,在棱上取點(diǎn),使得;連并延長(zhǎng),交于點(diǎn)

因?yàn)?/span>中,,所以,

又四邊形為平行四邊形,所以,

所以 -----------------2分

中,為重心,所以,

,所以

,,

所以平面平面

平面,所以平面 ---------5分

)在中,,,,

所以的面積.--7分

的中點(diǎn),連結(jié)、

中,,所以,且

又因?yàn)槠矫?/span>平面,平面平面,

所以平面.--------------10分

故三棱錐的體積.-------12分

【命題意圖】本題考查空間中線面平行的證明、幾何體體積的求解,考查基本的空間想象能力和邏輯推理能力、運(yùn)算能力等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】分別求出適合下列條件的直線方程:
(Ⅰ)經(jīng)過點(diǎn)且在x軸上的截距等于在y軸上截距的2倍;
(Ⅱ)經(jīng)過直線2x+7y﹣4=0與7x﹣21y﹣1=0的交點(diǎn),且和A(﹣3,1),B(5,7)等距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是正方形, 底面, , 分別是的中點(diǎn).

(1)在圖中畫出過點(diǎn)的平面,使得平面(須說明畫法,并給予證明);

(2)若過點(diǎn)的平面平面且截四棱錐所得截面的面積為,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓過點(diǎn)A(2,1),離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)若直線與橢圓相交于BC兩點(diǎn)(異于點(diǎn)A),線段BCy軸平分,且,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|(x+2)(x﹣5)>0},B={x|m≤x<m+1},且BRA),則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且過點(diǎn)

(Ⅰ)求橢圓的方程;

(Ⅱ)已知橢圓的左焦點(diǎn)為直線與橢圓交于不同兩點(diǎn),都在軸上方),

(。┤,求的面積;

(ⅱ)直線是否恒過定點(diǎn)?若過定點(diǎn),求出該定點(diǎn)的坐標(biāo);若不過定點(diǎn),請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)寫出直線的極坐標(biāo)方程與曲線的直角坐標(biāo)方程;

(2)已知與直線平行的直線過點(diǎn),且與曲線交于兩點(diǎn),試求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U=R,集合A={x|x<﹣2或3<x≤4},B={x|x2﹣2x﹣15≤0}.求:
(1)UA;
(2)A∪B;
(3)若C={x|x>a},且B∩C=B,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y= ﹣(x+1)0的定義域?yàn)椋?/span>
A.(﹣1, ]
B.(﹣1, )??
C.(﹣∞,﹣1)∪(﹣1, ]
D.[ ,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案