8.已知非零向量$\overrightarrow{m}$,$\overrightarrow{n}$滿足4|$\overrightarrow{m}$|=3|$\overrightarrow{n}$|,cos<$\overrightarrow{m}$,$\overrightarrow{n}$>=$\frac{1}{3}$.若$\overrightarrow{n}$⊥(t$\overrightarrow{m}$+$\overrightarrow{n}$),則實(shí)數(shù)t的值為( 。
A.4B.-4C.$\frac{9}{4}$D.-$\frac{9}{4}$

分析 若$\overrightarrow{n}$⊥(t$\overrightarrow{m}$+$\overrightarrow{n}$),則$\overrightarrow{n}$•(t$\overrightarrow{m}$+$\overrightarrow{n}$)=0,進(jìn)而可得實(shí)數(shù)t的值.

解答 解:∵4|$\overrightarrow{m}$|=3|$\overrightarrow{n}$|,cos<$\overrightarrow{m}$,$\overrightarrow{n}$>=$\frac{1}{3}$,$\overrightarrow{n}$⊥(t$\overrightarrow{m}$+$\overrightarrow{n}$),
∴$\overrightarrow{n}$•(t$\overrightarrow{m}$+$\overrightarrow{n}$)=t$\overrightarrow{m}$•$\overrightarrow{n}$+$\overrightarrow{n}$2=t|$\overrightarrow{m}$|•|$\overrightarrow{n}$|•$\frac{1}{3}$+|$\overrightarrow{n}$|2=($\frac{t}{4}+1$)|$\overrightarrow{n}$|2=0,
解得:t=-4,
故選:B.

點(diǎn)評 本題考查的知識點(diǎn)是平面向量數(shù)量積的運(yùn)算,向量垂直的充要條件,難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓E:$\frac{x^2}{t}$+$\frac{y^2}{3}$=1的焦點(diǎn)在x軸上,A是E的左頂點(diǎn),斜率為k(k>0)的直線交E于A,M兩點(diǎn),點(diǎn)N在E上,MA⊥NA.
(Ⅰ)當(dāng)t=4,|AM|=|AN|時,求△AMN的面積;
(Ⅱ)當(dāng)2|AM|=|AN|時,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期為π.
(1)求ω的值;
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,已知正三棱錐P-ABC的側(cè)面是直角三角形,PA=6,頂點(diǎn)P在平面ABC內(nèi)的正投影為點(diǎn)D,D在平面PAB內(nèi)的正投影為點(diǎn)E,連接PE并延長交AB于點(diǎn)G.
(Ⅰ)證明:G是AB的中點(diǎn);
(Ⅱ)在圖中作出點(diǎn)E在平面PAC內(nèi)的正投影F(說明作法及理由),并求四面體PDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)集合A={y|y=2x,x∈R},B={x|x2-1<0},則A∪B=(  )
A.(-1,1)B.(0,1)C.(-1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知雙曲線E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),若矩形ABCD的四個頂點(diǎn)在E上,AB,CD的中點(diǎn)為E的兩個焦點(diǎn),且2|AB|=3|BC|,則E的離心率是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在平面直角坐標(biāo)系xOy中,已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),橢圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù)),設(shè)直線l與橢圓C相交于A,B兩點(diǎn),求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.從2,3,8,9中任取兩個不同的數(shù)字,分別記為a,b,則logab為整數(shù)的概率是$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若{an}是等差數(shù)列,若a1+a10=21,S10=105.

查看答案和解析>>

同步練習(xí)冊答案