3.設(shè)集合A={y|y=2x,x∈R},B={x|x2-1<0},則A∪B=( 。
A.(-1,1)B.(0,1)C.(-1,+∞)D.(0,+∞)

分析 求解指數(shù)函數(shù)的值域化簡A,求解一元二次不等式化簡B,再由并集運算得答案.

解答 解:∵A={y|y=2x,x∈R}=(0,+∞),
B={x|x2-1<0}=(-1,1),
∴A∪B=(0,+∞)∪(-1,1)=(-1,+∞).
故選:C.

點評 本題考查并集及其運算,考查了指數(shù)函數(shù)的值域,考查一元二次不等式的解法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若cosA=$\frac{4}{5}$,cosC=$\frac{5}{13}$,a=1,則b=$\frac{21}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某學(xué)校運動會的立定跳遠和30秒跳繩兩個單項比賽分成預(yù)賽和決賽兩個階段,表中為10名學(xué)生的預(yù)賽成績,其中有三個數(shù)據(jù)模糊.
學(xué)生序號  2 4 6 8 10
 立定跳遠(單位:米) 1.961.92 1.82 1.80 1.78 1.76 1.74 1.72 1.68 1.60
 30秒跳繩(單位:次) 63 7560  6372 70a-1  b65 
在這10名學(xué)生中,進入立定跳遠決賽的有8人,同時進入立定跳遠決賽和30秒跳繩決賽的有6人,則(  )
A.2號學(xué)生進入30秒跳繩決賽B.5號學(xué)生進入30秒跳繩決賽
C.8號學(xué)生進入30秒跳繩決賽D.9號學(xué)生進入30秒跳繩決賽

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若函數(shù)f(x)=x-$\frac{1}{3}$sin2x+asinx在(-∞,+∞)單調(diào)遞增,則a的取值范圍是( 。
A.[-1,1]B.[-1,$\frac{1}{3}}$]C.[-$\frac{1}{3}$,$\frac{1}{3}}$]D.[-1,-$\frac{1}{3}}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在直角坐標(biāo)系xOy中,直線l:y=t(t≠0)交y軸于點M,交拋物線C:y2=2px(p>0)于點P,M關(guān)于點P的對稱點為N,連結(jié)ON并延長交C于點H.
(Ⅰ)求$\frac{{|{OH}|}}{{|{ON}|}}$;
(Ⅱ)除H以外,直線MH與C是否有其它公共點?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知非零向量$\overrightarrow{m}$,$\overrightarrow{n}$滿足4|$\overrightarrow{m}$|=3|$\overrightarrow{n}$|,cos<$\overrightarrow{m}$,$\overrightarrow{n}$>=$\frac{1}{3}$.若$\overrightarrow{n}$⊥(t$\overrightarrow{m}$+$\overrightarrow{n}$),則實數(shù)t的值為( 。
A.4B.-4C.$\frac{9}{4}$D.-$\frac{9}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|x|,x≤m}\\{{x}^{2}-2mx+4m,x>m}\end{array}\right.$,其中m>0,若存在實數(shù)b,使得關(guān)于x的方程f(x)=b有三個不同的根,則m的取值范圍是(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某公司為激勵創(chuàng)新,計劃逐年加大研發(fā)資金投入.若該公司2015年全年投入研發(fā)資金130萬元,在此基礎(chǔ)上,每年投入的研發(fā)資金比上一年增長12%,則該公司全年投入的研發(fā)資金開始超過200萬元的年份是( 。
(參考數(shù)據(jù):lg1.12=0.05,lg1.3=0.11,lg2=0.30)
A.2018年B.2019年C.2020年D.2021年

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知|$\overrightarrow{a}$|=3,|$\overrightarrow$|=4,<$\overrightarrow{a}$,$\overrightarrow$>=60°,求($\overrightarrow{a}$+2$\overrightarrow$)•($\overrightarrow{a}$-3$\overrightarrow$)=-93.

查看答案和解析>>

同步練習(xí)冊答案