分析 去絕對值號得出$f(x)=\left\{\begin{array}{l}{ax-ab+2}&{x≥b}\\{-ax+ab+2}&{x<b}\end{array}\right.$,這樣根據(jù)f(x)在區(qū)間(0,+∞)上為增函數(shù)及一次函數(shù)的單調(diào)性便可判斷出a,b的取值范圍.
解答 解:$f(x)=a|x-b|+2=\left\{\begin{array}{l}{ax-ab+2}&{x≥b}\\{-ax+ab+2}&{x<b}\end{array}\right.$;
∵f(x)在(0,+∞)上為增函數(shù);
∴x≥b時,f(x)=ax-ab+2為增函數(shù);
∴a>0,b≤0;
∴實數(shù)a,b的取值范圍分別為:(0,+∞),(-∞,0].
故答案為:(0,+∞),(-∞,0].
點評 考查含絕對值函數(shù)的處理方法:去絕對值號,以及一次函數(shù)的單調(diào)性.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $2\sqrt{2}+2\sqrt{5}$ | B. | $2\sqrt{2}+\sqrt{5}$ | C. | $4\sqrt{2}+2\sqrt{5}$ | D. | $4\sqrt{2}+\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+$\frac{1}{{2}^{k}+2}$+…+$\frac{1}{{2}^{k+1}-1}$ | B. | $\frac{1}{{2}^{k+1}-1}$ | ||
C. | $\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k+1}-1}$ | D. | $\frac{1}{4}$+$\frac{1}{5}$+$\frac{1}{6}$+…+$\frac{1}{{2}^{k+1}-1}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com